Nonequilibrium mean-field theory of resistive phase transitions

We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of a driven-dissipative symmetry-broken insulator, which we solve analytically fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-07, Vol.98 (3), p.035145, Article 035145
Hauptverfasser: Han, Jong E., Li, Jiajun, Aron, Camille, Kotliar, Gabriel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the quantum mechanical origin of resistive phase transitions in solids driven by a constant electric field in the vicinity of a metal-insulator transition. We perform a nonequilibrium mean-field analysis of a driven-dissipative symmetry-broken insulator, which we solve analytically for the most part. We find that the insulator-to-metal transition (IMT) and the metal-to-insulator transition (MIT) proceed by two distinct electronic mechanisms: Landau-Zener processes and the destabilization of the metallic state by Joule heating, respectively. However, we show that both regimes can be unified in a common effective thermal description, where the effective temperature Teff depends on the state of the system. This explains recent experimental measurements in which the hot-electron temperature at the IMT was found to match the equilibrium transition temperature. Our analytic approach enables us to formulate testable predictions on the nonanalytic behavior of I−V relation near the insulator-to-metal transition. Building on these successes, we propose an effective Ginzburg-Landau theory which paves the way to incorporating spatial fluctuations and to bringing the theory closer to a realistic description of the resistive switchings in correlated materials.
ISSN:2469-9950
1098-0121
2469-9969
1550-235X
DOI:10.1103/PhysRevB.98.035145