Cu Nanodendrite Foams on Integrated Band Array Electrodes for the Nonenzymatic Detection of Glucose

We demonstrate the successful electrodeposition of Cu nanodendrite foams (CuFoams) onto a series of lithographically formed gold band array electrodes at negative overpotentials in an acidic environment. The nanodendrite foams were deposited onto two different integrated microelectrode arrays fabric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied nano materials 2019-09, Vol.2 (9), p.5878-5889
Hauptverfasser: Juska, Vuslat B, Walcarius, Alain, Pemble, Martyn E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the successful electrodeposition of Cu nanodendrite foams (CuFoams) onto a series of lithographically formed gold band array electrodes at negative overpotentials in an acidic environment. The nanodendrite foams were deposited onto two different integrated microelectrode arrays fabricated using standard lithographic techniques. Each electrode consisted of 17 gold band electrodes deposited onto a silicon wafer substrate, labeled BA5 (with a width of 5 μm and a length of 250 μm) and BA10 (with a width of 10 μm and a length of 500 μm). Prior to Cu deposition the gold electrodes were characterized by scanning electron microscopy (SEM) in order to evaluate the morphology of each design and by cyclic voltammetry (CV) in order to investigate their diffusion profiles. After Cu deposition the resulting 3D foam structures were studied using SEM, XPS, and EDX. The CuFoam/Au microelectrodes were then used for the electrocatalytic detection of glucose via oxidation at a potential of +0.45 V vs Ag/AgCl in an alkaline medium. It was found that both types of electrode arrays used showed excellent analytical performance in terms of sensitivity, reproducibility, and stability in comparison with the best performances reported in the literature. In particular, the BA5-CuFoam electrode exhibited an outstanding sensitivity of 10,630 μA mM–1 cm–2 toward glucose with a wide linear range up to 22.55 mM, while the BA10-CuFoam electrode showed a sensitivity of 4,437 μA mM–1 cm–2. The performance of the proposed electrochemical sensor is attributed to a combination of the use of the very high surface area Cu nanodendrite foam and the enhanced radial distribution profile associated with the use of the smaller band microfabricated electrodes. Additionally, both sensors also showed a strong resistance to the poisoning effects of chlorine ions and excellent stability over a period of three months.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.9b01325