ICAP-1 monoubiquitylation coordinates matrix density and rigidity sensing for cell migration through ROCK2-MRCKα balance
Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1 (also known as ITGB1BP1), a β1 integrin partner, is essential for ensuring integrin activation cycle and f...
Gespeichert in:
Veröffentlicht in: | Journal of cell science 2017-02, Vol.130 (3), p.626-636 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell migration is a complex process requiring density and rigidity sensing of the microenvironment to adapt cell migratory speed through focal adhesion and actin cytoskeleton regulation. ICAP-1 (also known as ITGB1BP1), a β1 integrin partner, is essential for ensuring integrin activation cycle and focal adhesion formation. We show that ICAP-1 is monoubiquitylated by Smurf1, preventing ICAP-1 binding to β1 integrin. The non-ubiquitylatable form of ICAP-1 modifies β1 integrin focal adhesion organization and interferes with fibronectin density sensing. ICAP-1 is also required for adapting cell migration in response to substrate stiffness in a β1-integrin-independent manner. ICAP-1 monoubiquitylation regulates rigidity sensing by increasing MRCKα (also known as CDC42BPA)-dependent cell contractility through myosin phosphorylation independently of substrate rigidity. We provide evidence that ICAP-1 monoubiquitylation helps in switching from ROCK2-mediated to MRCKα-mediated cell contractility. ICAP-1 monoubiquitylation serves as a molecular switch to coordinate extracellular matrix density and rigidity sensing thus acting as a crucial modulator of cell migration and mechanosensing. |
---|---|
ISSN: | 0021-9533 1477-9137 |
DOI: | 10.1242/jcs.200139 |