Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt

Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2019-02, Vol.11 (2), Article 024003
Hauptverfasser: Verney, Lucas, Lescanne, Raphaël, Devoret, Michel H., Leghtas, Zaki, Mirrahimi, Mazyar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ control of couplings, which cannot be obtained by near-equilibrium Hamiltonians. However, as shown in this paper, out-of-equilibrium systems are easily plagued by complex dynamics, leading to instabilities. The prediction and prevention of these instabilities is crucial, both from a fundamental and application perspective. We propose an inductively shunted transmon as the elementary circuit optimized for strong parametric drives. Developing a numerical approach that avoids the built-in limitations of perturbative analysis, we demonstrate that adding the inductive shunt significantly extends the range of pump powers over which the circuit behaves in a stable manner.
ISSN:2331-7019
2331-7019
DOI:10.1103/PhysRevApplied.11.024003