Structural Instability of Driven Josephson Circuits Prevented by an Inductive Shunt
Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2019-02, Vol.11 (2), Article 024003 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superconducting circuits are a versatile platform to implement a multitude of Hamiltonians that perform quantum computation, simulation, and sensing tasks. A key ingredient for realizing a desired Hamiltonian is the irradiation of the circuit by a strong drive. These strong drives provide an in situ control of couplings, which cannot be obtained by near-equilibrium Hamiltonians. However, as shown in this paper, out-of-equilibrium systems are easily plagued by complex dynamics, leading to instabilities. The prediction and prevention of these instabilities is crucial, both from a fundamental and application perspective. We propose an inductively shunted transmon as the elementary circuit optimized for strong parametric drives. Developing a numerical approach that avoids the built-in limitations of perturbative analysis, we demonstrate that adding the inductive shunt significantly extends the range of pump powers over which the circuit behaves in a stable manner. |
---|---|
ISSN: | 2331-7019 2331-7019 |
DOI: | 10.1103/PhysRevApplied.11.024003 |