Inverting the Ray-Knight identity on the line

Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2021-01, Vol.26 (none), p.1-25
Hauptverfasser: Lupu, Titus, Sabot, Christophe, Tarrès, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue none
container_start_page 1
container_title Electronic journal of probability
container_volume 26
creator Lupu, Titus
Sabot, Christophe
Tarrès, Pierre
description Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in discrete
doi_str_mv 10.1214/21-EJP657
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02315386v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02315386v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-43072c8e1a7c70a67be8c7714cae8696cfa3f555f38210f968dff750e79ef80c3</originalsourceid><addsrcrecordid>eNpNUE9LwzAcDaLgnB78Br16iP6SNMmvxzGmmxY2RM8hZskaqam0YdBvL3Oint7j_Ts8Qq4Z3DLOyjvO6OJxo6Q-IRMGKKgqsTr9x8_JxTC8A3AoFU4IXaW973NMuyI3vni2I31KcdfkIm59yjGPRZe-rTYmf0nOgm0Hf_WDU_J6v3iZL2m9fljNZzV1XGKmpQDNHXpmtdNglX7z6LRmpbMeVaVcsCJIKYNAziBUCrchaAleVz4gODElN8fdxrbms48fth9NZ6NZzmpz0IALJgWqPf_Lur4bht6H3wIDc_jEcGaOn4gvq3tRyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inverting the Ray-Knight identity on the line</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Open Access</source><creator>Lupu, Titus ; Sabot, Christophe ; Tarrès, Pierre</creator><creatorcontrib>Lupu, Titus ; Sabot, Christophe ; Tarrès, Pierre</creatorcontrib><description>Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in discrete</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.1214/21-EJP657</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Mathematics ; Probability</subject><ispartof>Electronic journal of probability, 2021-01, Vol.26 (none), p.1-25</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-43072c8e1a7c70a67be8c7714cae8696cfa3f555f38210f968dff750e79ef80c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02315386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lupu, Titus</creatorcontrib><creatorcontrib>Sabot, Christophe</creatorcontrib><creatorcontrib>Tarrès, Pierre</creatorcontrib><title>Inverting the Ray-Knight identity on the line</title><title>Electronic journal of probability</title><description>Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in discrete</description><subject>Mathematics</subject><subject>Probability</subject><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNUE9LwzAcDaLgnB78Br16iP6SNMmvxzGmmxY2RM8hZskaqam0YdBvL3Oint7j_Ts8Qq4Z3DLOyjvO6OJxo6Q-IRMGKKgqsTr9x8_JxTC8A3AoFU4IXaW973NMuyI3vni2I31KcdfkIm59yjGPRZe-rTYmf0nOgm0Hf_WDU_J6v3iZL2m9fljNZzV1XGKmpQDNHXpmtdNglX7z6LRmpbMeVaVcsCJIKYNAziBUCrchaAleVz4gODElN8fdxrbms48fth9NZ6NZzmpz0IALJgWqPf_Lur4bht6H3wIDc_jEcGaOn4gvq3tRyA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Lupu, Titus</creator><creator>Sabot, Christophe</creator><creator>Tarrès, Pierre</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20210101</creationdate><title>Inverting the Ray-Knight identity on the line</title><author>Lupu, Titus ; Sabot, Christophe ; Tarrès, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-43072c8e1a7c70a67be8c7714cae8696cfa3f555f38210f968dff750e79ef80c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lupu, Titus</creatorcontrib><creatorcontrib>Sabot, Christophe</creatorcontrib><creatorcontrib>Tarrès, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lupu, Titus</au><au>Sabot, Christophe</au><au>Tarrès, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverting the Ray-Knight identity on the line</atitle><jtitle>Electronic journal of probability</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>26</volume><issue>none</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in discrete</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.1214/21-EJP657</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-6489
ispartof Electronic journal of probability, 2021-01, Vol.26 (none), p.1-25
issn 1083-6489
1083-6489
language eng
recordid cdi_hal_primary_oai_HAL_hal_02315386v2
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Open Access
subjects Mathematics
Probability
title Inverting the Ray-Knight identity on the line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T07%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverting%20the%20Ray-Knight%20identity%20on%20the%20line&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=Lupu,%20Titus&rft.date=2021-01-01&rft.volume=26&rft.issue=none&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.1214/21-EJP657&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02315386v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true