Inverting the Ray-Knight identity on the line

Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2021-01, Vol.26 (none), p.1-25
Hauptverfasser: Lupu, Titus, Sabot, Christophe, Tarrès, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a divergent Bass-Burdzy flow we construct a self-repelling one-dimensional diffusion. Heuristically, it can be interpreted as a solution to an SDE with a singular drift involving a derivative of the local time. We show that this self-repelling diffusion inverts the second Ray-Knight identity on the line. The proof goes through an approximation by a self-repelling jump processes that has been previously shown by the authors to invert the Ray-Knight identity in discrete
ISSN:1083-6489
1083-6489
DOI:10.1214/21-EJP657