Probing Surface Oxide Formation and Dissolution on/of Ir Single Crystals via X‑ray Photoelectron Spectroscopy and Inductively Coupled Plasma Mass Spectrometry

Gaining fundamental insights into the formation and the stability of surface oxides on iridium (Ir) surfaces is pivotal to oxygen evolution reaction (OER) electrocatalysis. Herein, we examined the potential-dependent structural and chemical changes occurring on planar Ir(111), Ir(210), and nanofacet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2019-11, Vol.9 (11), p.9859-9869
Hauptverfasser: Scohy, Marion, Abbou, Sofyane, Martin, Vincent, Gilles, Bruno, Sibert, Eric, Dubau, Laetitia, Maillard, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gaining fundamental insights into the formation and the stability of surface oxides on iridium (Ir) surfaces is pivotal to oxygen evolution reaction (OER) electrocatalysis. Herein, we examined the potential-dependent structural and chemical changes occurring on planar Ir(111), Ir(210), and nanofaceted Ir(210) single-crystal surfaces using electrochemistry, scanning probe microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry. We show that, after polarization in OER conditions, Ir surface atoms feature mixed oxidation states(0), (+III), and (+IV)and then enrich into Ir­(+IV) due to the dissolution of Ir­(+III) species. The rate of surface and near-surface layer enrichment in Ir­(+IV) species depends on the modulation mode of the potential (linear potential sweeps vs. potential steps) and is faster on opened surfaces. By combining fits derived from the XPS spectra and OER activity measurements, we found that the OER specific activity varies with the Ir oxidation state and is closely related to the fraction of Ir­(+III) species.
ISSN:2155-5435
2155-5435
DOI:10.1021/acscatal.9b02988