A reconstructive polyamorphous transition in borosilicate glass induced by irreversible compaction

Understanding the response of glasses to high pressure is of key importance for clarifying energy-dissipation and the origin of material damage during mechanical load. In the absence of shear bands or motile dislocations, pressure-induced deformation is governed by elastic and inelastic structural c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-02, Vol.140 (5), p.054501-054501
Hauptverfasser: Fuhrmann, Sindy, Deschamps, Thierry, Champagnon, Bernard, Wondraczek, Lothar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the response of glasses to high pressure is of key importance for clarifying energy-dissipation and the origin of material damage during mechanical load. In the absence of shear bands or motile dislocations, pressure-induced deformation is governed by elastic and inelastic structural changes which lead to compaction of the glass network. Here, we report on a pressure-induced reconstructive amorphous-amorphous transition which was detected in sodium borosilicate glass by Raman and Brillouin scattering. The transition occurs through the formation of four-membered danburite-type rings of BO4 and SiO4-tetrahedra. We suggest that the inelastic pressure-resistance is governed by the Si-O-Si-backbone of the mixed borosilicate network. We further show that compaction is accompanied by increasing structural homogeneity and interpret this as a universal phenomenon in non-crystalline materials.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4863348