Rolling Against a Sphere: The Non-transitive Case

We study the control system of a Riemannian manifold M of dimension n rolling on the sphere S n . The controllability of this system is described in terms of the holonomy of a vector bundle connection which, we prove, is isomorphic to the Riemannian holonomy group of the cone C ( M ) of M . Using Be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2542-2562
Hauptverfasser: Chitour, Yacine, Godoy Molina, Mauricio, Kokkonen, Petri, Markina, Irina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the control system of a Riemannian manifold M of dimension n rolling on the sphere S n . The controllability of this system is described in terms of the holonomy of a vector bundle connection which, we prove, is isomorphic to the Riemannian holonomy group of the cone C ( M ) of M . Using Berger’s list, we reduce the possible holonomies to a few families. In particular, we focus on the cases where the holonomy is the unitary and the symplectic group. In the first case, using the rolling formalism, we construct explicitly a Sasakian structure on M ; and in the second case, we construct a 3-Sasakian structure on M .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-015-9638-y