Rolling Against a Sphere: The Non-transitive Case
We study the control system of a Riemannian manifold M of dimension n rolling on the sphere S n . The controllability of this system is described in terms of the holonomy of a vector bundle connection which, we prove, is isomorphic to the Riemannian holonomy group of the cone C ( M ) of M . Using Be...
Gespeichert in:
Veröffentlicht in: | The Journal of Geometric Analysis 2016-10, Vol.26 (4), p.2542-2562 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the control system of a Riemannian manifold
M
of dimension
n
rolling on the sphere
S
n
. The controllability of this system is described in terms of the holonomy of a vector bundle connection which, we prove, is isomorphic to the Riemannian holonomy group of the cone
C
(
M
) of
M
. Using Berger’s list, we reduce the possible holonomies to a few families. In particular, we focus on the cases where the holonomy is the unitary and the symplectic group. In the first case, using the rolling formalism, we construct explicitly a Sasakian structure on
M
; and in the second case, we construct a 3-Sasakian structure on
M
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-015-9638-y |