Stability of Semi-Lagrangian schemes of arbitrary odd degree under constant and variable advection speed
The equivalence between semi-Lagrangian and Lagrange-Galerkin schemes has been proved by R. Ferretti [J. Comp. Math. 28 (2010), no. 4, 461-473], [Numerische Mathematik 124 (2012), no. 1, 31-56] for the case of centered Lagrange interpolation of odd degree p\le 13. We generalize this result to an arb...
Gespeichert in:
Veröffentlicht in: | Mathematics of computation 2020-07, Vol.89 (324), p.1783-1805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The equivalence between semi-Lagrangian and Lagrange-Galerkin schemes has been proved by R. Ferretti [J. Comp. Math. 28 (2010), no. 4, 461-473], [Numerische Mathematik 124 (2012), no. 1, 31-56] for the case of centered Lagrange interpolation of odd degree p\le 13. We generalize this result to an arbitrary odd degree, for both the case of constant- and variable-coefficient equations. In addition, we prove that the same holds for spline interpolations. |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/mcom/3494 |