Magneto-transport in inverted HgTe quantum wells
HgTe quantum wells (QWs) are two-dimensional semiconductor systems that change their properties at the critical thickness d c , corresponding to the band inversion and topological phase transition. The motivation of this work was to study magnetotransport properties of HgTe QWs with thickness approa...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2019-04, Vol.4 (1), Article 13 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | HgTe quantum wells (QWs) are two-dimensional semiconductor systems that change their properties at the critical thickness
d
c
, corresponding to the band inversion and topological phase transition. The motivation of this work was to study magnetotransport properties of HgTe QWs with thickness approaching
d
c
, and examine them as potential candidates for quantum Hall effect (QHE) resistance standards. We show that in the case of
d
>
d
c
(inverted QWs), the quantization is influenced by coexistence of topological helical edge states and QHE chiral states. However, at
d
≈
d
c
, where QW states exhibit a graphene-like band structure, an accurate Hall resistance quantization in low magnetic fields (
B
≤ 1.4 T) and at relatively high temperatures (
T
≥ 1.3 K) may be achieved. We observe wider and more robust quantized QHE plateaus for holes, which suggests—in accordance with the “charge reservoir” model—a pinning of the Fermi level in the valence band region. Our analysis exhibits advantages and drawbacks of HgTe QWs for quantum metrology applications, as compared to graphene and GaAs counterparts. |
---|---|
ISSN: | 2397-4648 2397-4648 |
DOI: | 10.1038/s41535-019-0154-3 |