On self-similar solutions of the vortex filament equation

We study self-similar solutions of the binormal curvature flow which governs the evolution of vortex filaments and is equivalent to the Landau-Lifshitz equation. The corresponding dynamics is described by the real solutions of the σ-Painlevé IV equation with two real parameters. Connection formulae...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-08, Vol.60 (8)
Hauptverfasser: Gamayun, O., Lisovyy, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study self-similar solutions of the binormal curvature flow which governs the evolution of vortex filaments and is equivalent to the Landau-Lifshitz equation. The corresponding dynamics is described by the real solutions of the σ-Painlevé IV equation with two real parameters. Connection formulae for Painlevé IV transcendents allow for a complete characterization of the asymptotic properties of the curvature and torsion of the filament. We also provide compact hypergeometric expressions for self-similar solutions corresponding to corner initial conditions.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5096170