Decomposing 8-regular graphs into paths of length 4
A T-decomposition of a graph G is a set of edge-disjoint copies of T in G that cover the edge set of G. Graham and Häggkvist (1989) conjectured that any 2ℓ-regular graph G admits a T-decomposition if T is a tree with ℓ edges. Kouider and Lonc (1999) conjectured that, in the special case where T is t...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2017-09, Vol.340 (9), p.2275-2285 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A T-decomposition of a graph G is a set of edge-disjoint copies of T in G that cover the edge set of G. Graham and Häggkvist (1989) conjectured that any 2ℓ-regular graph G admits a T-decomposition if T is a tree with ℓ edges. Kouider and Lonc (1999) conjectured that, in the special case where T is the path with ℓ edges, G admits a T-decomposition D where every vertex of G is the end-vertex of exactly two paths of D, and proved that this statement holds when G has girth at least (ℓ+3)∕2. In this paper we verify Kouider and Lonc’s Conjecture for paths of length 4. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2017.04.024 |