The Kostant invariant and special ϵ-orthogonal representations for ϵ-quadratic colour Lie algebras

Let k be a field of characteristic not two or three, let g be a finite-dimensional colour Lie algebra and let V be a finite-dimensional representation of g. In this article we give various ways of constructing a colour Lie algebra g˜ whose bracket in some sense extends both the bracket of g and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2021-04, Vol.572, p.337-380
1. Verfasser: Meyer, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a field of characteristic not two or three, let g be a finite-dimensional colour Lie algebra and let V be a finite-dimensional representation of g. In this article we give various ways of constructing a colour Lie algebra g˜ whose bracket in some sense extends both the bracket of g and the action of g on V. Colour Lie algebras, originally introduced by R. Ree ([18]), generalise both Lie algebras and Lie superalgebras, and in those cases our results imply many known results ([13], [14], [5], [23]). For a class of representations arising in this context we show there are covariants satisfying identities analogous to Mathews identities for binary cubics.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2020.12.023