The Kostant invariant and special ϵ-orthogonal representations for ϵ-quadratic colour Lie algebras
Let k be a field of characteristic not two or three, let g be a finite-dimensional colour Lie algebra and let V be a finite-dimensional representation of g. In this article we give various ways of constructing a colour Lie algebra g˜ whose bracket in some sense extends both the bracket of g and the...
Gespeichert in:
Veröffentlicht in: | Journal of algebra 2021-04, Vol.572, p.337-380 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be a field of characteristic not two or three, let g be a finite-dimensional colour Lie algebra and let V be a finite-dimensional representation of g. In this article we give various ways of constructing a colour Lie algebra g˜ whose bracket in some sense extends both the bracket of g and the action of g on V. Colour Lie algebras, originally introduced by R. Ree ([18]), generalise both Lie algebras and Lie superalgebras, and in those cases our results imply many known results ([13], [14], [5], [23]). For a class of representations arising in this context we show there are covariants satisfying identities analogous to Mathews identities for binary cubics. |
---|---|
ISSN: | 0021-8693 1090-266X |
DOI: | 10.1016/j.jalgebra.2020.12.023 |