Engineering the interfacial adhesion in basalt/epoxy composites by plasma polymerization

In an attempt to improve mechanical properties of basalt fibre/epoxy composites, the present work provides a comparison between the effects of a commercial coupling agent, a thermal de-sizing treatment and a plasma polymerization process on the fibre/matrix interfacial strength. The different basalt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2019-07, Vol.122, p.67-76
Hauptverfasser: Seghini, M.C., Touchard, F., Sarasini, F., Cech, V., Chocinski-Arnault, L., Mellier, D., Tirillò, J., Bracciale, M.P., Zvonek, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an attempt to improve mechanical properties of basalt fibre/epoxy composites, the present work provides a comparison between the effects of a commercial coupling agent, a thermal de-sizing treatment and a plasma polymerization process on the fibre/matrix interfacial strength. The different basalt fibres were characterized in terms of surface morphology, by FE-SEM observations, and chemical composition, performing FT-IR analysis. The interfacial adhesion has been investigated by single fibre fragmentation test on single filament composite samples. The plasma polymerization process was able to produce a homogeneous tetravinylsilane (pp-TVS) coating on the surface of basalt fibres, which resulted in a significant increase in the fibre/matrix adhesion. The surface roughness of the untreated and treated basalt fibres has been measured by AFM and a relationship between the surface roughness and the fibre/matrix adhesion quality was found. High-resolution microtomography (µ-CT) has been used to support the analysis of the damage modes during fragmentation tests.
ISSN:1359-835X
1878-5840
DOI:10.1016/j.compositesa.2019.04.013