Engineering the interfacial adhesion in basalt/epoxy composites by plasma polymerization
In an attempt to improve mechanical properties of basalt fibre/epoxy composites, the present work provides a comparison between the effects of a commercial coupling agent, a thermal de-sizing treatment and a plasma polymerization process on the fibre/matrix interfacial strength. The different basalt...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2019-07, Vol.122, p.67-76 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In an attempt to improve mechanical properties of basalt fibre/epoxy composites, the present work provides a comparison between the effects of a commercial coupling agent, a thermal de-sizing treatment and a plasma polymerization process on the fibre/matrix interfacial strength. The different basalt fibres were characterized in terms of surface morphology, by FE-SEM observations, and chemical composition, performing FT-IR analysis. The interfacial adhesion has been investigated by single fibre fragmentation test on single filament composite samples. The plasma polymerization process was able to produce a homogeneous tetravinylsilane (pp-TVS) coating on the surface of basalt fibres, which resulted in a significant increase in the fibre/matrix adhesion. The surface roughness of the untreated and treated basalt fibres has been measured by AFM and a relationship between the surface roughness and the fibre/matrix adhesion quality was found. High-resolution microtomography (µ-CT) has been used to support the analysis of the damage modes during fragmentation tests. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2019.04.013 |