Fractal dimension of critical curves in the $O(n)$-symmetric $\phi^4$-model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, XY and Heisenberg models
We calculate the fractal dimension $d_{\rm f}$ of critical curves in the $O(n)$ symmetric $(\vec \phi^2)^2$-theory in $d=4-\varepsilon$ dimensions at 6-loop order. This gives the fractal dimension of loop-erased random walks at $n=-2$, self-avoiding walks ($n=0$), Ising lines $(n=1)$, and XY lines (...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2020-01, Vol.101 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We calculate the fractal dimension $d_{\rm f}$ of critical curves in the $O(n)$ symmetric $(\vec \phi^2)^2$-theory in $d=4-\varepsilon$ dimensions at 6-loop order. This gives the fractal dimension of loop-erased random walks at $n=-2$, self-avoiding walks ($n=0$), Ising lines $(n=1)$, and XY lines ($n=2$), in agreement with numerical simulations. It can be compared to the fractal dimension $d_{\rm f}^{\rm tot}$ of all lines, i.e. backbone plus the surrounding loops, identical to $d_{\rm f}^{\rm tot} = 1/\nu$. The combination $\phi_{\rm c}= d_{\rm f}/d_{\rm f}^{\rm tot} = \nu d_{\rm f}$ is the crossover exponent, describing a system with mass anisotropy. Introducing a novel self-consistent resummation procedure, and combining it with analytic results in $d=2$ allows us to give improved estimates in $d=3$ for all relevant exponents at 6-loop order. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.101.012104 |