Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance
This paper reports on a new method to extract the intrinsic two‐port characteristics of a high‐electron‐mobility‐transistor considering the gate resistance distributed nature knowing the gate metal sheet resistance. The procedure is straightforward. It consists of de‐embedding the extrinsic parasiti...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2019-01, Vol.216 (1), p.1800505-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | 1800505 |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 216 |
creator | Hassan, Bilal Cutivet, Adrien Bouchilaoun, Meriem Rodriguez, Christophe Soltani, Ali Boone, François Maher, Hassan |
description | This paper reports on a new method to extract the intrinsic two‐port characteristics of a high‐electron‐mobility‐transistor considering the gate resistance distributed nature knowing the gate metal sheet resistance. The procedure is straightforward. It consists of de‐embedding the extrinsic parasitic elements and access resistances, measure the gate metal sheet resistance and finally extracts the intrinsic parameters by a proposed set of direct equations. It can be integrated into most modeling approaches using electrical equivalent schematics. This original method is experimentally conducted on AlGaN/GaN MOSHEMTs on Si substrate featuring four different gate widths W (0.25, 0.5, 1, 2 mm). The interest of such an extraction procedure is shown for devices with gate width above 500 μm, which indicates its strong relevance for the modeling of large GaN transistors for power electronics. In the case of fT and fmax, the classical model has variation up‐to 17.5% and 9.2% with respect to measurement while the distributed model has only 2.8% and 1.3%, respectively at W = 2 mm, which emphasized the significance of the distributed gate resistance model for large periphery GaN HEMTs devices.
This paper reports on a new method which consider distributed nature of gate resistance to model large periphery GaN HEMTs. It brings significant improvement in fT and fmax modeling as compared to classical gate resistance modeling for large gate width above 500 um. This further highlights the interest of considering the distributed gate resistance on the performance of the GaN transistor. |
doi_str_mv | 10.1002/pssa.201800505 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02273403v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2165104071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3515-dc4ce1de1f1eb2ea99a1316c2e966f8eccc4607c26f952e68d255337c5618bd3</originalsourceid><addsrcrecordid>eNqFkEFPwkAQhRujiYhePTfx5AGc2e1u2yMBBZOiRPC8WbZTKKm07hYN_942NXj0MjN5-d7L5HneLcIQAdhD5ZweMsAIQIA483oYSTaQHOPz0w1w6V05twMIRBBiz5sk2m7IX5DNqy3Zoz_VL_7scb5y_rxMqcj3G__dtXOSu9rm60NNaQPV5L-RayS9N3TtXWS6cHTzu_ve6ulxNZ4Nktfp83iUDAwXKAapCQxhSpghrRnpONbIURpGsZRZRMaYQEJomMxiwUhGKROC89AIidE65X3vvovd6kJVNv_Q9qhKnavZKFGtBoyFPAD-hQ1717GVLT8P5Gq1Kw9233ynGEqBEEDYUsOOMrZ0zlJ2ikVQbamqLVWdSm0McWf4zgs6_kOrxXI5-vP-ACXEeVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2165104071</pqid></control><display><type>article</type><title>Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hassan, Bilal ; Cutivet, Adrien ; Bouchilaoun, Meriem ; Rodriguez, Christophe ; Soltani, Ali ; Boone, François ; Maher, Hassan</creator><creatorcontrib>Hassan, Bilal ; Cutivet, Adrien ; Bouchilaoun, Meriem ; Rodriguez, Christophe ; Soltani, Ali ; Boone, François ; Maher, Hassan</creatorcontrib><description>This paper reports on a new method to extract the intrinsic two‐port characteristics of a high‐electron‐mobility‐transistor considering the gate resistance distributed nature knowing the gate metal sheet resistance. The procedure is straightforward. It consists of de‐embedding the extrinsic parasitic elements and access resistances, measure the gate metal sheet resistance and finally extracts the intrinsic parameters by a proposed set of direct equations. It can be integrated into most modeling approaches using electrical equivalent schematics. This original method is experimentally conducted on AlGaN/GaN MOSHEMTs on Si substrate featuring four different gate widths W (0.25, 0.5, 1, 2 mm). The interest of such an extraction procedure is shown for devices with gate width above 500 μm, which indicates its strong relevance for the modeling of large GaN transistors for power electronics. In the case of fT and fmax, the classical model has variation up‐to 17.5% and 9.2% with respect to measurement while the distributed model has only 2.8% and 1.3%, respectively at W = 2 mm, which emphasized the significance of the distributed gate resistance model for large periphery GaN HEMTs devices.
This paper reports on a new method which consider distributed nature of gate resistance to model large periphery GaN HEMTs. It brings significant improvement in fT and fmax modeling as compared to classical gate resistance modeling for large gate width above 500 um. This further highlights the interest of considering the distributed gate resistance on the performance of the GaN transistor.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201800505</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum gallium nitrides ; distributed gate resistance ; Electrical resistivity ; Engineering Sciences ; Gallium nitrides ; GaN ; HEMT ; High electron mobility transistors ; Metal sheets ; modeling ; Modelling ; Parasitics (electronics) ; Semiconductor devices ; Silicon substrates</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-01, Vol.216 (1), p.1800505-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3515-dc4ce1de1f1eb2ea99a1316c2e966f8eccc4607c26f952e68d255337c5618bd3</citedby><cites>FETCH-LOGICAL-c3515-dc4ce1de1f1eb2ea99a1316c2e966f8eccc4607c26f952e68d255337c5618bd3</cites><orcidid>0000-0001-8894-1558 ; 0000-0001-6185-0760 ; 0000-0001-8128-4030 ; 0000-0002-1622-1882 ; 0000-0002-3827-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201800505$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201800505$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02273403$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hassan, Bilal</creatorcontrib><creatorcontrib>Cutivet, Adrien</creatorcontrib><creatorcontrib>Bouchilaoun, Meriem</creatorcontrib><creatorcontrib>Rodriguez, Christophe</creatorcontrib><creatorcontrib>Soltani, Ali</creatorcontrib><creatorcontrib>Boone, François</creatorcontrib><creatorcontrib>Maher, Hassan</creatorcontrib><title>Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance</title><title>Physica status solidi. A, Applications and materials science</title><description>This paper reports on a new method to extract the intrinsic two‐port characteristics of a high‐electron‐mobility‐transistor considering the gate resistance distributed nature knowing the gate metal sheet resistance. The procedure is straightforward. It consists of de‐embedding the extrinsic parasitic elements and access resistances, measure the gate metal sheet resistance and finally extracts the intrinsic parameters by a proposed set of direct equations. It can be integrated into most modeling approaches using electrical equivalent schematics. This original method is experimentally conducted on AlGaN/GaN MOSHEMTs on Si substrate featuring four different gate widths W (0.25, 0.5, 1, 2 mm). The interest of such an extraction procedure is shown for devices with gate width above 500 μm, which indicates its strong relevance for the modeling of large GaN transistors for power electronics. In the case of fT and fmax, the classical model has variation up‐to 17.5% and 9.2% with respect to measurement while the distributed model has only 2.8% and 1.3%, respectively at W = 2 mm, which emphasized the significance of the distributed gate resistance model for large periphery GaN HEMTs devices.
This paper reports on a new method which consider distributed nature of gate resistance to model large periphery GaN HEMTs. It brings significant improvement in fT and fmax modeling as compared to classical gate resistance modeling for large gate width above 500 um. This further highlights the interest of considering the distributed gate resistance on the performance of the GaN transistor.</description><subject>Aluminum gallium nitrides</subject><subject>distributed gate resistance</subject><subject>Electrical resistivity</subject><subject>Engineering Sciences</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>HEMT</subject><subject>High electron mobility transistors</subject><subject>Metal sheets</subject><subject>modeling</subject><subject>Modelling</subject><subject>Parasitics (electronics)</subject><subject>Semiconductor devices</subject><subject>Silicon substrates</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwkAQhRujiYhePTfx5AGc2e1u2yMBBZOiRPC8WbZTKKm07hYN_942NXj0MjN5-d7L5HneLcIQAdhD5ZweMsAIQIA483oYSTaQHOPz0w1w6V05twMIRBBiz5sk2m7IX5DNqy3Zoz_VL_7scb5y_rxMqcj3G__dtXOSu9rm60NNaQPV5L-RayS9N3TtXWS6cHTzu_ve6ulxNZ4Nktfp83iUDAwXKAapCQxhSpghrRnpONbIURpGsZRZRMaYQEJomMxiwUhGKROC89AIidE65X3vvovd6kJVNv_Q9qhKnavZKFGtBoyFPAD-hQ1717GVLT8P5Gq1Kw9233ynGEqBEEDYUsOOMrZ0zlJ2ikVQbamqLVWdSm0McWf4zgs6_kOrxXI5-vP-ACXEeVw</recordid><startdate>20190109</startdate><enddate>20190109</enddate><creator>Hassan, Bilal</creator><creator>Cutivet, Adrien</creator><creator>Bouchilaoun, Meriem</creator><creator>Rodriguez, Christophe</creator><creator>Soltani, Ali</creator><creator>Boone, François</creator><creator>Maher, Hassan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8894-1558</orcidid><orcidid>https://orcid.org/0000-0001-6185-0760</orcidid><orcidid>https://orcid.org/0000-0001-8128-4030</orcidid><orcidid>https://orcid.org/0000-0002-1622-1882</orcidid><orcidid>https://orcid.org/0000-0002-3827-2517</orcidid></search><sort><creationdate>20190109</creationdate><title>Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance</title><author>Hassan, Bilal ; Cutivet, Adrien ; Bouchilaoun, Meriem ; Rodriguez, Christophe ; Soltani, Ali ; Boone, François ; Maher, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3515-dc4ce1de1f1eb2ea99a1316c2e966f8eccc4607c26f952e68d255337c5618bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aluminum gallium nitrides</topic><topic>distributed gate resistance</topic><topic>Electrical resistivity</topic><topic>Engineering Sciences</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>HEMT</topic><topic>High electron mobility transistors</topic><topic>Metal sheets</topic><topic>modeling</topic><topic>Modelling</topic><topic>Parasitics (electronics)</topic><topic>Semiconductor devices</topic><topic>Silicon substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hassan, Bilal</creatorcontrib><creatorcontrib>Cutivet, Adrien</creatorcontrib><creatorcontrib>Bouchilaoun, Meriem</creatorcontrib><creatorcontrib>Rodriguez, Christophe</creatorcontrib><creatorcontrib>Soltani, Ali</creatorcontrib><creatorcontrib>Boone, François</creatorcontrib><creatorcontrib>Maher, Hassan</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hassan, Bilal</au><au>Cutivet, Adrien</au><au>Bouchilaoun, Meriem</au><au>Rodriguez, Christophe</au><au>Soltani, Ali</au><au>Boone, François</au><au>Maher, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-01-09</date><risdate>2019</risdate><volume>216</volume><issue>1</issue><spage>1800505</spage><epage>n/a</epage><pages>1800505-n/a</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>This paper reports on a new method to extract the intrinsic two‐port characteristics of a high‐electron‐mobility‐transistor considering the gate resistance distributed nature knowing the gate metal sheet resistance. The procedure is straightforward. It consists of de‐embedding the extrinsic parasitic elements and access resistances, measure the gate metal sheet resistance and finally extracts the intrinsic parameters by a proposed set of direct equations. It can be integrated into most modeling approaches using electrical equivalent schematics. This original method is experimentally conducted on AlGaN/GaN MOSHEMTs on Si substrate featuring four different gate widths W (0.25, 0.5, 1, 2 mm). The interest of such an extraction procedure is shown for devices with gate width above 500 μm, which indicates its strong relevance for the modeling of large GaN transistors for power electronics. In the case of fT and fmax, the classical model has variation up‐to 17.5% and 9.2% with respect to measurement while the distributed model has only 2.8% and 1.3%, respectively at W = 2 mm, which emphasized the significance of the distributed gate resistance model for large periphery GaN HEMTs devices.
This paper reports on a new method which consider distributed nature of gate resistance to model large periphery GaN HEMTs. It brings significant improvement in fT and fmax modeling as compared to classical gate resistance modeling for large gate width above 500 um. This further highlights the interest of considering the distributed gate resistance on the performance of the GaN transistor.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201800505</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8894-1558</orcidid><orcidid>https://orcid.org/0000-0001-6185-0760</orcidid><orcidid>https://orcid.org/0000-0001-8128-4030</orcidid><orcidid>https://orcid.org/0000-0002-1622-1882</orcidid><orcidid>https://orcid.org/0000-0002-3827-2517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2019-01, Vol.216 (1), p.1800505-n/a |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02273403v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum gallium nitrides distributed gate resistance Electrical resistivity Engineering Sciences Gallium nitrides GaN HEMT High electron mobility transistors Metal sheets modeling Modelling Parasitics (electronics) Semiconductor devices Silicon substrates |
title | Large Periphery GaN HEMTs Modeling Using Distributed Gate Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A23%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20Periphery%20GaN%20HEMTs%20Modeling%20Using%20Distributed%20Gate%20Resistance&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Hassan,%20Bilal&rft.date=2019-01-09&rft.volume=216&rft.issue=1&rft.spage=1800505&rft.epage=n/a&rft.pages=1800505-n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201800505&rft_dat=%3Cproquest_hal_p%3E2165104071%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2165104071&rft_id=info:pmid/&rfr_iscdi=true |