Symmetry and Multiplicity of Solutions in a Two-Dimensional Landau–de Gennes Model for Liquid Crystals

We consider a variational two-dimensional Landau–de Gennes model in the theory of nematic liquid crystals in a disk of radius R . We prove that under a symmetric boundary condition carrying a topological defect of degree k 2 for some given even non-zero integer k , there are exactly two minimizers f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archive for rational mechanics and analysis 2020-09, Vol.237 (3), p.1421-1473
Hauptverfasser: Ignat, Radu, Nguyen, Luc, Slastikov, Valeriy, Zarnescu, Arghir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a variational two-dimensional Landau–de Gennes model in the theory of nematic liquid crystals in a disk of radius R . We prove that under a symmetric boundary condition carrying a topological defect of degree k 2 for some given even non-zero integer k , there are exactly two minimizers for all large enough R . We show that the minimizers do not inherit the full symmetry structure of the energy functional and the boundary data. We further show that there are at least five symmetric critical points.
ISSN:0003-9527
1432-0673
DOI:10.1007/s00205-020-01539-x