Symmetry and Multiplicity of Solutions in a Two-Dimensional Landau–de Gennes Model for Liquid Crystals
We consider a variational two-dimensional Landau–de Gennes model in the theory of nematic liquid crystals in a disk of radius R . We prove that under a symmetric boundary condition carrying a topological defect of degree k 2 for some given even non-zero integer k , there are exactly two minimizers f...
Gespeichert in:
Veröffentlicht in: | Archive for rational mechanics and analysis 2020-09, Vol.237 (3), p.1421-1473 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a variational two-dimensional Landau–de Gennes model in the theory of nematic liquid crystals in a disk of radius
R
. We prove that under a symmetric boundary condition carrying a topological defect of degree
k
2
for some given
even
non-zero integer
k
, there are exactly two minimizers for all large enough
R
. We show that the minimizers do not inherit the full symmetry structure of the energy functional and the boundary data. We further show that there are at least five symmetric critical points. |
---|---|
ISSN: | 0003-9527 1432-0673 |
DOI: | 10.1007/s00205-020-01539-x |