de Haas-van Alphen oscillations with non-parabolic dispersions

de Haas-van Alphen oscillation spectrum of two-dimensional systems is studied for general power law energy dispersion, yielding a Fermi surface area of the form S ( E ) ∝ E α for a given energy E . The case α = 1 stands for the parabolic energy dispersion. It is demonstrated that the periodicity of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2017-04, Vol.90 (4), p.1-8, Article 60
Hauptverfasser: Fortin, Jean-Yves, Audouard, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:de Haas-van Alphen oscillation spectrum of two-dimensional systems is studied for general power law energy dispersion, yielding a Fermi surface area of the form S ( E ) ∝ E α for a given energy E . The case α = 1 stands for the parabolic energy dispersion. It is demonstrated that the periodicity of the magnetic oscillations in inverse field can depend notably on the temperature. We evaluated analytically the Fourier spectrum of these oscillations to evidence the frequency shift and smearing of the main peak structure as the temperature increases.
ISSN:1434-6028
1434-6036
DOI:10.1140/epjb/e2017-70505-2