Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space of spinors
We give examples illustrating the fact that the different space/time splittings of the tangent bundle of a semi-Riemannian spin manifold give rise to nonequivalent norms on the space of compactly supported sections of the spinor bundle, and as a result, to different completions. We give a necessary...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2019-06, Vol.60 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give examples illustrating the fact that the different space/time splittings of the tangent bundle of a semi-Riemannian spin manifold give rise to nonequivalent norms on the space of compactly supported sections of the spinor bundle, and as a result, to different completions. We give a necessary and sufficient condition for two space/time splittings to define equivalent norms in terms of a generalized Doppler shift between maximal negative definite subspaces. We explore some consequences for the noncommutative geometry program. |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.5080525 |