Doppler shift in semi-Riemannian signature and the non-uniqueness of the Krein space of spinors

We give examples illustrating the fact that the different space/time splittings of the tangent bundle of a semi-Riemannian spin manifold give rise to nonequivalent norms on the space of compactly supported sections of the spinor bundle, and as a result, to different completions. We give a necessary...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2019-06, Vol.60 (6)
Hauptverfasser: Besnard, Fabien, Bizi, Nadir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give examples illustrating the fact that the different space/time splittings of the tangent bundle of a semi-Riemannian spin manifold give rise to nonequivalent norms on the space of compactly supported sections of the spinor bundle, and as a result, to different completions. We give a necessary and sufficient condition for two space/time splittings to define equivalent norms in terms of a generalized Doppler shift between maximal negative definite subspaces. We explore some consequences for the noncommutative geometry program.
ISSN:0022-2488
1089-7658
DOI:10.1063/1.5080525