Diagonal p-permutation functors

Let k be an algebraically closed field of positive characteristic p, and let F be an algebraically closed field of characteristic 0. We consider the F-linear category FppkΔ of finite groups, in which the set of morphisms from G to H is the F-linear extension FTΔ(H,G) of the Grothendieck group TΔ(H,G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebra 2020-08, Vol.556, p.1036-1056
Hauptverfasser: Bouc, Serge, Yılmaz, Deniz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be an algebraically closed field of positive characteristic p, and let F be an algebraically closed field of characteristic 0. We consider the F-linear category FppkΔ of finite groups, in which the set of morphisms from G to H is the F-linear extension FTΔ(H,G) of the Grothendieck group TΔ(H,G) of p-permutation (kH,kG)-bimodules with (twisted) diagonal vertices. The F-linear functors from FppkΔ to F-Mod are called diagonal p-permutation functors. They form an abelian category FppkΔ. We study in particular the functor FTΔ sending a finite group G to the Grothendieck group FT(G) of p-permutation kG-modules, and show that FTΔ is a semisimple object of FppkΔ, equal to the direct sum of specific simple functors parametrized by isomorphism classes of pairs (P,s) of a finite p-group P and a generator s of a p′-subgroup acting faithfully on P. This leads to a precise description of the evaluations of these simple functors. In particular, we show that the simple functor indexed by the trivial pair (1,1) is isomorphic to the functor sending a finite group G to FK0(kG), where K0(kG) is the Grothendieck group of projective kG-modules.
ISSN:0021-8693
1090-266X
DOI:10.1016/j.jalgebra.2020.03.031