A parallel high-order compressible flows solver with domain decomposition method in the generalized curvilinear coordinates system

Purpose This paper aims to present the development of a highly parallel finite-difference computational fluid dynamics code in generalized curvilinear coordinates system. The objectives are to handle internal and external flows in fairly complex geometries including shock waves, compressible turbule...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of numerical methods for heat & fluid flow 2020-01, Vol.30 (1), p.2-38
Hauptverfasser: Piquet, Arthur, Zebiri, Boubakr, Hadjadj, Abdellah, Safdari Shadloo, Mostafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to present the development of a highly parallel finite-difference computational fluid dynamics code in generalized curvilinear coordinates system. The objectives are to handle internal and external flows in fairly complex geometries including shock waves, compressible turbulence and heat transfer. Design/methodology/approach The code is equipped with high-order discretization schemes to improve the computational accuracy of the solution algorithm. Besides, a new method to deal with the geometrical singularities, so-called domain decomposition method (DDM), is implemented. The DDM consists of using two different meshes communicating with each other, where the base mesh is Cartesian and the overlapped one a hollow cylinder. Findings The robustness of the present implemented code is appraised through several numerical test cases including a vortex advection, supersonic compressible flow over a cylinder, Poiseuille flow, turbulent channel and pipe flows. The results obtained here are in an excellent agreement when compared to the experimental data and the previous direct numerical simulation (DNS). As for the DDM strategy, it was successful as simulation time is clearly decreased and the connection between the two subdomains does not create spurious oscillations. Originality/value In sum, the developed solver was capable of solving, accurately and with high-precision, two- and three-dimensional compressible flows including fairly complex geometries. It is noted that the data provided by the DNS of supersonic pipe flows are not abundant in the literature and therefore will be available online for the community.
ISSN:0961-5539
0961-5539
1758-6585
DOI:10.1108/HFF-01-2019-0048