Properties of the stochastic approximation EM algorithm with mini-batch sampling

To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2020-11, Vol.30 (6), p.1725-1739
Hauptverfasser: Kuhn, Estelle, Matias, Catherine, Rebafka, Tabea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models. In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given.
ISSN:0960-3174
1573-1375
DOI:10.1007/s11222-020-09968-0