The largest order statistics for the inradius in an isotropic STIT tessellation

A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremes (Boston) 2019-12, Vol.22 (4), p.571-598
Hauptverfasser: Chenavier, Nicolas, Nagel, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 598
container_issue 4
container_start_page 571
container_title Extremes (Boston)
container_volume 22
creator Chenavier, Nicolas
Nagel, Werner
description A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in W ρ as ρ goes to infinity.
doi_str_mv 10.1007/s10687-019-00356-0
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02189209v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262002822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhosoOKd_wFPAk4fql6RJk-MY6gaDHazgLaRpumXUZiad4L83s6I3T_n4eJ6XfG-WXWO4wwDlfcTARZkDljkAZTyHk2yCWUlyidnraZqp4DmWUp5nFzHuIEmYs0m2rrYWdTpsbByQD40NKA56cHFwJqLWBzQkwPVBN-4Q04B0j1z0Q_B7Z9BztazQYGO0XZcs319mZ63uor36eafZy-NDNV_kq_XTcj5b5YbKcshrbiXWAjBthRCFJSAZaYUUbW1kUTc6LZmmwhCOTdEUheBGAC0YIw2vraHT7HbM3epO7YN70-FTee3UYrZSxx0QLGSK_cCJvRnZffDvh3So2vlD6NP3FCGcABBBSKLISJngYwy2_Y3FoI4lq7FklUpW3yUrSBIdpZjgfmPDX_Q_1hdLOH3f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262002822</pqid></control><display><type>article</type><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chenavier, Nicolas ; Nagel, Werner</creator><creatorcontrib>Chenavier, Nicolas ; Nagel, Werner</creatorcontrib><description>A planar stationary and isotropic STIT tessellation at time t &gt; 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ &gt; 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in W ρ as ρ goes to infinity.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-019-00356-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Civil Engineering ; Economics ; Environmental Management ; Finance ; Hydrogeology ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Nuclei (cytology) ; Probability ; Quality Control ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Tessellation ; Windows (intervals)</subject><ispartof>Extremes (Boston), 2019-12, Vol.22 (4), p.571-598</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Extremes is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</citedby><cites>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</cites><orcidid>0000-0001-7680-4361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10687-019-00356-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10687-019-00356-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02189209$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Nagel, Werner</creatorcontrib><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>A planar stationary and isotropic STIT tessellation at time t &gt; 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ &gt; 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in W ρ as ρ goes to infinity.</description><subject>Civil Engineering</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclei (cytology)</subject><subject>Probability</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Tessellation</subject><subject>Windows (intervals)</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAYhosoOKd_wFPAk4fql6RJk-MY6gaDHazgLaRpumXUZiad4L83s6I3T_n4eJ6XfG-WXWO4wwDlfcTARZkDljkAZTyHk2yCWUlyidnraZqp4DmWUp5nFzHuIEmYs0m2rrYWdTpsbByQD40NKA56cHFwJqLWBzQkwPVBN-4Q04B0j1z0Q_B7Z9BztazQYGO0XZcs319mZ63uor36eafZy-NDNV_kq_XTcj5b5YbKcshrbiXWAjBthRCFJSAZaYUUbW1kUTc6LZmmwhCOTdEUheBGAC0YIw2vraHT7HbM3epO7YN70-FTee3UYrZSxx0QLGSK_cCJvRnZffDvh3So2vlD6NP3FCGcABBBSKLISJngYwy2_Y3FoI4lq7FklUpW3yUrSBIdpZjgfmPDX_Q_1hdLOH3f</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chenavier, Nicolas</creator><creator>Nagel, Werner</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid></search><sort><creationdate>20191201</creationdate><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><author>Chenavier, Nicolas ; Nagel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Civil Engineering</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclei (cytology)</topic><topic>Probability</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Tessellation</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Nagel, Werner</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chenavier, Nicolas</au><au>Nagel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The largest order statistics for the inradius in an isotropic STIT tessellation</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>571</spage><epage>598</epage><pages>571-598</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>A planar stationary and isotropic STIT tessellation at time t &gt; 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ &gt; 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in W ρ as ρ goes to infinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10687-019-00356-0</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-1999
ispartof Extremes (Boston), 2019-12, Vol.22 (4), p.571-598
issn 1386-1999
1572-915X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02189209v1
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Civil Engineering
Economics
Environmental Management
Finance
Hydrogeology
Insurance
Management
Mathematics
Mathematics and Statistics
Nuclei (cytology)
Probability
Quality Control
Reliability
Safety and Risk
Statistics
Statistics for Business
Tessellation
Windows (intervals)
title The largest order statistics for the inradius in an isotropic STIT tessellation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20largest%20order%20statistics%20for%20the%20inradius%20in%20an%20isotropic%20STIT%20tessellation&rft.jtitle=Extremes%20(Boston)&rft.au=Chenavier,%20Nicolas&rft.date=2019-12-01&rft.volume=22&rft.issue=4&rft.spage=571&rft.epage=598&rft.pages=571-598&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-019-00356-0&rft_dat=%3Cproquest_hal_p%3E2262002822%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262002822&rft_id=info:pmid/&rfr_iscdi=true