The largest order statistics for the inradius in an isotropic STIT tessellation
A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method...
Gespeichert in:
Veröffentlicht in: | Extremes (Boston) 2019-12, Vol.22 (4), p.571-598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 4 |
container_start_page | 571 |
container_title | Extremes (Boston) |
container_volume | 22 |
creator | Chenavier, Nicolas Nagel, Werner |
description | A planar stationary and isotropic STIT tessellation at time
t
> 0 is observed in the window
W
ρ
=
t
−
1
π
ρ
⋅
[
−
1
2
,
1
2
]
2
, for
ρ
> 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in
W
ρ
as
ρ
goes to infinity. |
doi_str_mv | 10.1007/s10687-019-00356-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02189209v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262002822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</originalsourceid><addsrcrecordid>eNp9kEFLwzAYhosoOKd_wFPAk4fql6RJk-MY6gaDHazgLaRpumXUZiad4L83s6I3T_n4eJ6XfG-WXWO4wwDlfcTARZkDljkAZTyHk2yCWUlyidnraZqp4DmWUp5nFzHuIEmYs0m2rrYWdTpsbByQD40NKA56cHFwJqLWBzQkwPVBN-4Q04B0j1z0Q_B7Z9BztazQYGO0XZcs319mZ63uor36eafZy-NDNV_kq_XTcj5b5YbKcshrbiXWAjBthRCFJSAZaYUUbW1kUTc6LZmmwhCOTdEUheBGAC0YIw2vraHT7HbM3epO7YN70-FTee3UYrZSxx0QLGSK_cCJvRnZffDvh3So2vlD6NP3FCGcABBBSKLISJngYwy2_Y3FoI4lq7FklUpW3yUrSBIdpZjgfmPDX_Q_1hdLOH3f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262002822</pqid></control><display><type>article</type><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chenavier, Nicolas ; Nagel, Werner</creator><creatorcontrib>Chenavier, Nicolas ; Nagel, Werner</creatorcontrib><description>A planar stationary and isotropic STIT tessellation at time
t
> 0 is observed in the window
W
ρ
=
t
−
1
π
ρ
⋅
[
−
1
2
,
1
2
]
2
, for
ρ
> 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in
W
ρ
as
ρ
goes to infinity.</description><identifier>ISSN: 1386-1999</identifier><identifier>EISSN: 1572-915X</identifier><identifier>DOI: 10.1007/s10687-019-00356-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Civil Engineering ; Economics ; Environmental Management ; Finance ; Hydrogeology ; Insurance ; Management ; Mathematics ; Mathematics and Statistics ; Nuclei (cytology) ; Probability ; Quality Control ; Reliability ; Safety and Risk ; Statistics ; Statistics for Business ; Tessellation ; Windows (intervals)</subject><ispartof>Extremes (Boston), 2019-12, Vol.22 (4), p.571-598</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Extremes is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</citedby><cites>FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</cites><orcidid>0000-0001-7680-4361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10687-019-00356-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10687-019-00356-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02189209$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Nagel, Werner</creatorcontrib><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><title>Extremes (Boston)</title><addtitle>Extremes</addtitle><description>A planar stationary and isotropic STIT tessellation at time
t
> 0 is observed in the window
W
ρ
=
t
−
1
π
ρ
⋅
[
−
1
2
,
1
2
]
2
, for
ρ
> 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in
W
ρ
as
ρ
goes to infinity.</description><subject>Civil Engineering</subject><subject>Economics</subject><subject>Environmental Management</subject><subject>Finance</subject><subject>Hydrogeology</subject><subject>Insurance</subject><subject>Management</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nuclei (cytology)</subject><subject>Probability</subject><subject>Quality Control</subject><subject>Reliability</subject><subject>Safety and Risk</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Tessellation</subject><subject>Windows (intervals)</subject><issn>1386-1999</issn><issn>1572-915X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEFLwzAYhosoOKd_wFPAk4fql6RJk-MY6gaDHazgLaRpumXUZiad4L83s6I3T_n4eJ6XfG-WXWO4wwDlfcTARZkDljkAZTyHk2yCWUlyidnraZqp4DmWUp5nFzHuIEmYs0m2rrYWdTpsbByQD40NKA56cHFwJqLWBzQkwPVBN-4Q04B0j1z0Q_B7Z9BztazQYGO0XZcs319mZ63uor36eafZy-NDNV_kq_XTcj5b5YbKcshrbiXWAjBthRCFJSAZaYUUbW1kUTc6LZmmwhCOTdEUheBGAC0YIw2vraHT7HbM3epO7YN70-FTee3UYrZSxx0QLGSK_cCJvRnZffDvh3So2vlD6NP3FCGcABBBSKLISJngYwy2_Y3FoI4lq7FklUpW3yUrSBIdpZjgfmPDX_Q_1hdLOH3f</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Chenavier, Nicolas</creator><creator>Nagel, Werner</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag (Germany)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid></search><sort><creationdate>20191201</creationdate><title>The largest order statistics for the inradius in an isotropic STIT tessellation</title><author>Chenavier, Nicolas ; Nagel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-b6e91a8013f8884e20952f898fbc94bda8845a38c261c4d4486c8034552d6bec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Civil Engineering</topic><topic>Economics</topic><topic>Environmental Management</topic><topic>Finance</topic><topic>Hydrogeology</topic><topic>Insurance</topic><topic>Management</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nuclei (cytology)</topic><topic>Probability</topic><topic>Quality Control</topic><topic>Reliability</topic><topic>Safety and Risk</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Tessellation</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Nagel, Werner</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Extremes (Boston)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chenavier, Nicolas</au><au>Nagel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The largest order statistics for the inradius in an isotropic STIT tessellation</atitle><jtitle>Extremes (Boston)</jtitle><stitle>Extremes</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>22</volume><issue>4</issue><spage>571</spage><epage>598</epage><pages>571-598</pages><issn>1386-1999</issn><eissn>1572-915X</eissn><abstract>A planar stationary and isotropic STIT tessellation at time
t
> 0 is observed in the window
W
ρ
=
t
−
1
π
ρ
⋅
[
−
1
2
,
1
2
]
2
, for
ρ
> 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in
W
ρ
as
ρ
goes to infinity.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10687-019-00356-0</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-1999 |
ispartof | Extremes (Boston), 2019-12, Vol.22 (4), p.571-598 |
issn | 1386-1999 1572-915X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02189209v1 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Civil Engineering Economics Environmental Management Finance Hydrogeology Insurance Management Mathematics Mathematics and Statistics Nuclei (cytology) Probability Quality Control Reliability Safety and Risk Statistics Statistics for Business Tessellation Windows (intervals) |
title | The largest order statistics for the inradius in an isotropic STIT tessellation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20largest%20order%20statistics%20for%20the%20inradius%20in%20an%20isotropic%20STIT%20tessellation&rft.jtitle=Extremes%20(Boston)&rft.au=Chenavier,%20Nicolas&rft.date=2019-12-01&rft.volume=22&rft.issue=4&rft.spage=571&rft.epage=598&rft.pages=571-598&rft.issn=1386-1999&rft.eissn=1572-915X&rft_id=info:doi/10.1007/s10687-019-00356-0&rft_dat=%3Cproquest_hal_p%3E2262002822%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262002822&rft_id=info:pmid/&rfr_iscdi=true |