The largest order statistics for the inradius in an isotropic STIT tessellation
A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method...
Gespeichert in:
Veröffentlicht in: | Extremes (Boston) 2019-12, Vol.22 (4), p.571-598 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A planar stationary and isotropic STIT tessellation at time
t
> 0 is observed in the window
W
ρ
=
t
−
1
π
ρ
⋅
[
−
1
2
,
1
2
]
2
, for
ρ
> 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in
W
ρ
as
ρ
goes to infinity. |
---|---|
ISSN: | 1386-1999 1572-915X |
DOI: | 10.1007/s10687-019-00356-0 |