The largest order statistics for the inradius in an isotropic STIT tessellation

A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremes (Boston) 2019-12, Vol.22 (4), p.571-598
Hauptverfasser: Chenavier, Nicolas, Nagel, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A planar stationary and isotropic STIT tessellation at time t > 0 is observed in the window W ρ = t − 1 π ρ ⋅ [ − 1 2 , 1 2 ] 2 , for ρ > 0. With each cell of the tessellation, we associate the inradius, which is the radius of the largest disk contained in the cell. Using the Chen-Stein method, we compute the limit distributions of the largest order statistics for the inradii of all cells whose nuclei are contained in W ρ as ρ goes to infinity.
ISSN:1386-1999
1572-915X
DOI:10.1007/s10687-019-00356-0