Nanoplasmonics-enhanced label-free imaging of endothelial cell monolayer integrity

Surface plasmon resonance imaging (SPRI) is a powerful label-free imaging modality for the analysis of morphological dynamics in cell monolayers. However, classical plasmonic imaging systems have relatively poor spatial resolution along one axis due to the plasmon mode attenuation distance (tens of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2019-09, Vol.141, p.111478, Article 111478
Hauptverfasser: Banville, Frederic A., Moreau, Julien, Chabot, Kevin, Cattoni, Andrea, Fröhlich, Ulrike, Bryche, Jean-François, Collin, Stéphane, Charette, Paul G., Grandbois, Michel, Canva, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface plasmon resonance imaging (SPRI) is a powerful label-free imaging modality for the analysis of morphological dynamics in cell monolayers. However, classical plasmonic imaging systems have relatively poor spatial resolution along one axis due to the plasmon mode attenuation distance (tens of μm, typically), which significantly limits their ability to resolve subcellular structures. We address this limitation by adding an array of nanostructures onto the metal sensing surface (25 nm thick, 200 nm width, 400 nm period grating) to couple localized plasmons with propagating plasmons, thereby reducing attenuation length and commensurately increasing spatial imaging resolution, without significant loss of sensitivity or image contrast. In this work, experimental results obtained with both conventional unstructured and nanostructured gold film SPRI sensor chips show a clear gain in spatial resolution achieved with surface nanostructuring. The work demonstrates the ability of the nanostructured SPRI chips to resolve fine morphological detail (intercellular gaps) in experiments monitoring changes in endothelial cell monolayer integrity following the activation of the cell surface protease-activated receptor 1 (PAR1) by thrombin. In particular, the nanostructured chips reveal the persistence of small intercellular gaps (
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2019.111478