Limit behavior of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index
We study the convergence in distribution, as H → 1 2 and as H → 1, of the integral R f (u)dZ H (u), where Z H is a Rosenblatt process with self-similarity index H ∈ 1 2 , 1 and f is a suitable deterministic function. We focus our analysis on the case of the Rosenblatt Ornstein-Uhlenbeck process, whi...
Gespeichert in:
Veröffentlicht in: | Theory of probability and mathematical statistics 2018-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the convergence in distribution, as H → 1 2 and as H → 1, of the integral R f (u)dZ H (u), where Z H is a Rosenblatt process with self-similarity index H ∈ 1 2 , 1 and f is a suitable deterministic function. We focus our analysis on the case of the Rosenblatt Ornstein-Uhlenbeck process, which is the solution of the Langevin equation driven by the Rosenblatt process. |
---|---|
ISSN: | 0094-9000 1547-7363 |