On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems

In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2019-01, Vol.57 (6), p.3939-3960
Hauptverfasser: Liang, Weichao, Amini, Nina H., Mason, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3960
container_issue 6
container_start_page 3939
container_title SIAM journal on control and optimization
container_volume 57
creator Liang, Weichao
Amini, Nina H.
Mason, Paolo
description In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined eigenstate of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems.
doi_str_mv 10.1137/19M1245177
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02176222v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02176222v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-bc085658df6f4ec00163aba6149d8658bb12e3153155d6a215bae6dc2d3c92603</originalsourceid><addsrcrecordid>eNpFkE9Lw0AUxBdRMFYvfoI99KIQ3bf_khxDqVZJLVI9h5dko5FNUrJJsX56UysKDwZ-zAyPIeQS2A2ACG4hWgKXCoLgiHjAIuUHIMJj4jGhhc-AR6fkzLkPxkBKkB55XDV0_rlpG9P0FVq67jGrbPWFfdU2tC3p9GnqJ2ZrLH0esOmHmsbN22Cxo8u2Nj9gvXO9qd05OSnROnPxqxPyejd_mS38ZHX_MIsTPxeS936Ws1BpFRalLqXJx0-0wAw1yKgIR55lwI0ANZ4qNHJQGRpd5LwQecQ1ExNydeh9R5tuuqrGbpe2WKWLOEn3jHEINOd8C6P3-uDNu9a5zpR_AWDpfrH0fzHxDYBdW90</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems</title><source>SIAM Journals Online</source><creator>Liang, Weichao ; Amini, Nina H. ; Mason, Paolo</creator><creatorcontrib>Liang, Weichao ; Amini, Nina H. ; Mason, Paolo</creatorcontrib><description>In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined eigenstate of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/19M1245177</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Optimization and Control ; Physics ; Quantum Physics</subject><ispartof>SIAM journal on control and optimization, 2019-01, Vol.57 (6), p.3939-3960</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-bc085658df6f4ec00163aba6149d8658bb12e3153155d6a215bae6dc2d3c92603</citedby><cites>FETCH-LOGICAL-c342t-bc085658df6f4ec00163aba6149d8658bb12e3153155d6a215bae6dc2d3c92603</cites><orcidid>0000-0003-2629-6092 ; 0000-0002-2583-9991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,3185,4025,27928,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02176222$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Weichao</creatorcontrib><creatorcontrib>Amini, Nina H.</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><title>On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems</title><title>SIAM journal on control and optimization</title><description>In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined eigenstate of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><subject>Physics</subject><subject>Quantum Physics</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE9Lw0AUxBdRMFYvfoI99KIQ3bf_khxDqVZJLVI9h5dko5FNUrJJsX56UysKDwZ-zAyPIeQS2A2ACG4hWgKXCoLgiHjAIuUHIMJj4jGhhc-AR6fkzLkPxkBKkB55XDV0_rlpG9P0FVq67jGrbPWFfdU2tC3p9GnqJ2ZrLH0esOmHmsbN22Cxo8u2Nj9gvXO9qd05OSnROnPxqxPyejd_mS38ZHX_MIsTPxeS936Ws1BpFRalLqXJx0-0wAw1yKgIR55lwI0ANZ4qNHJQGRpd5LwQecQ1ExNydeh9R5tuuqrGbpe2WKWLOEn3jHEINOd8C6P3-uDNu9a5zpR_AWDpfrH0fzHxDYBdW90</recordid><startdate>201901</startdate><enddate>201901</enddate><creator>Liang, Weichao</creator><creator>Amini, Nina H.</creator><creator>Mason, Paolo</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2629-6092</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid></search><sort><creationdate>201901</creationdate><title>On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems</title><author>Liang, Weichao ; Amini, Nina H. ; Mason, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-bc085658df6f4ec00163aba6149d8658bb12e3153155d6a215bae6dc2d3c92603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><topic>Physics</topic><topic>Quantum Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Weichao</creatorcontrib><creatorcontrib>Amini, Nina H.</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Weichao</au><au>Amini, Nina H.</au><au>Mason, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2019-01</date><risdate>2019</risdate><volume>57</volume><issue>6</issue><spage>3939</spage><epage>3960</epage><pages>3939-3960</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined eigenstate of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/19M1245177</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-2629-6092</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2019-01, Vol.57 (6), p.3939-3960
issn 0363-0129
1095-7138
language eng
recordid cdi_hal_primary_oai_HAL_hal_02176222v1
source SIAM Journals Online
subjects Mathematics
Optimization and Control
Physics
Quantum Physics
title On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T05%3A56%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Exponential%20Stabilization%20of%20$N$-Level%20Quantum%20Angular%20Momentum%20Systems&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Liang,%20Weichao&rft.date=2019-01&rft.volume=57&rft.issue=6&rft.spage=3939&rft.epage=3960&rft.pages=3939-3960&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/19M1245177&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02176222v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true