On Exponential Stabilization of $N$-Level Quantum Angular Momentum Systems
In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergen...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2019-01, Vol.57 (6), p.3939-3960 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider the feedback stabilization problem for N-level quantum angular momentum systems undergoing continuous-time measurements. By using stochastic and geometric control tools, we provide sufficient conditions on the feedback control law ensuring almost sure exponential convergence to a predetermined eigenstate of the measurement operator. In order to achieve these results, we establish general features of quantum trajectories which are of interest by themselves. We illustrate the results by designing a class of feedback control laws satisfying the above-mentioned conditions and finally we demonstrate the effectiveness of our methodology through numerical simulations for three-level quantum angular momentum systems. |
---|---|
ISSN: | 0363-0129 1095-7138 |
DOI: | 10.1137/19M1245177 |