Structure of the 80S ribosome–Xrn1 nuclease complex
Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2019-04, Vol.26 (4), p.275-280 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 280 |
---|---|
container_issue | 4 |
container_start_page | 275 |
container_title | Nature structural & molecular biology |
container_volume | 26 |
creator | Tesina, Petr Heckel, Elisabeth Cheng, Jingdong Fromont-Racine, Micheline Buschauer, Robert Kater, Lukas Beatrix, Birgitta Berninghausen, Otto Jacquier, Alain Becker, Thomas Beckmann, Roland |
description | Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation.
The cryo-EM structure of the
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation. |
doi_str_mv | 10.1038/s41594-019-0202-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02174970v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382311</galeid><sourcerecordid>A593382311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEoqXwAFxQJC70kOLxn9g-ripKK62ExILEzXKcyTZVEi92UpUb79A35ElwlLLVIpAPtmZ-34xm_GXZayBnQJh6HzkIzQsCuiCU0EI8yY5BcFForcTT_Vuzo-xFjDeEUCEke54dMaIBQKnjTGzGMLlxCpj7Jh-vMVdkk4e28tH3-Ovn_bcwQD5MrkMbMXe-33V49zJ71tgu4quH-yT7evHhy_llsf708ep8tS5c6jMWFSMl17pkBCpZI-VVrQSWQKhDK-pKaseUrRWvgRDdUC6Ra0c5rQQttVPsJDtd6l7bzuxC29vww3jbmsvV2swxQkFyLcktJPbdwu6C_z5hHE3fRoddZwf0UzQUtFRacVYm9O1f6I2fwpAmMTTtUUqe4Edqazs07dD4MVg3FzUroRlTlMHc9uwfVDo19q3zAzZtih8ITg8EiRnxbtzaKUZztfl8yMLCuuBjDNjslwDEzBYwiwVMsoCZLWBE0rx5GG6qeqz3ij9_ngC6ADGlhi2Gx-n_X_U3RaG2BQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202774219</pqid></control><display><type>article</type><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</creator><creatorcontrib>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</creatorcontrib><description>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation.
The cryo-EM structure of the
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0202-5</identifier><identifier>PMID: 30911188</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/1645/2020 ; 631/337/574/1789 ; 631/45/612/1242 ; 631/535/1258/1259 ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Microscopy ; Biomedical and Life Sciences ; Channeling ; Cryoelectron Microscopy ; Decoding ; Degradation ; DNA binding proteins ; DNA-directed RNA polymerase ; Electron microscopy ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Exoribonucleases - ultrastructure ; Gene expression ; Genes ; Genetic aspects ; Homeostasis ; Life Sciences ; Membrane Biology ; Messenger RNA ; Microscopy ; Nuclease ; Nucleases ; Nucleotides ; Post-translation ; Protein Structure ; Ribonucleic acid ; Ribosomes ; Ribosomes - genetics ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RNA ; RNA polymerase ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - ultrastructure ; Structural Biology ; Translation ; Translation (Genetics)</subject><ispartof>Nature structural & molecular biology, 2019-04, Vol.26 (4), p.275-280</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</citedby><cites>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</cites><orcidid>0000-0001-5707-9184 ; 0000-0002-5227-1799 ; 0000-0001-5568-8533 ; 0000-0001-8458-2738 ; 0000-0003-4291-3898 ; 0000-0002-9255-0522 ; 0000-0003-4442-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0202-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0202-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30911188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02174970$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Heckel, Elisabeth</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Fromont-Racine, Micheline</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Beatrix, Birgitta</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Jacquier, Alain</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation.
The cryo-EM structure of the
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</description><subject>631/337/1645/2020</subject><subject>631/337/574/1789</subject><subject>631/45/612/1242</subject><subject>631/535/1258/1259</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Channeling</subject><subject>Cryoelectron Microscopy</subject><subject>Decoding</subject><subject>Degradation</subject><subject>DNA binding proteins</subject><subject>DNA-directed RNA polymerase</subject><subject>Electron microscopy</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Exoribonucleases - ultrastructure</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Messenger RNA</subject><subject>Microscopy</subject><subject>Nuclease</subject><subject>Nucleases</subject><subject>Nucleotides</subject><subject>Post-translation</subject><subject>Protein Structure</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Structural Biology</subject><subject>Translation</subject><subject>Translation (Genetics)</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks9u1DAQxiMEoqXwAFxQJC70kOLxn9g-ripKK62ExILEzXKcyTZVEi92UpUb79A35ElwlLLVIpAPtmZ-34xm_GXZayBnQJh6HzkIzQsCuiCU0EI8yY5BcFForcTT_Vuzo-xFjDeEUCEke54dMaIBQKnjTGzGMLlxCpj7Jh-vMVdkk4e28tH3-Ovn_bcwQD5MrkMbMXe-33V49zJ71tgu4quH-yT7evHhy_llsf708ep8tS5c6jMWFSMl17pkBCpZI-VVrQSWQKhDK-pKaseUrRWvgRDdUC6Ra0c5rQQttVPsJDtd6l7bzuxC29vww3jbmsvV2swxQkFyLcktJPbdwu6C_z5hHE3fRoddZwf0UzQUtFRacVYm9O1f6I2fwpAmMTTtUUqe4Edqazs07dD4MVg3FzUroRlTlMHc9uwfVDo19q3zAzZtih8ITg8EiRnxbtzaKUZztfl8yMLCuuBjDNjslwDEzBYwiwVMsoCZLWBE0rx5GG6qeqz3ij9_ngC6ADGlhi2Gx-n_X_U3RaG2BQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Tesina, Petr</creator><creator>Heckel, Elisabeth</creator><creator>Cheng, Jingdong</creator><creator>Fromont-Racine, Micheline</creator><creator>Buschauer, Robert</creator><creator>Kater, Lukas</creator><creator>Beatrix, Birgitta</creator><creator>Berninghausen, Otto</creator><creator>Jacquier, Alain</creator><creator>Becker, Thomas</creator><creator>Beckmann, Roland</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5707-9184</orcidid><orcidid>https://orcid.org/0000-0002-5227-1799</orcidid><orcidid>https://orcid.org/0000-0001-5568-8533</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0002-9255-0522</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid></search><sort><creationdate>20190401</creationdate><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><author>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/337/1645/2020</topic><topic>631/337/574/1789</topic><topic>631/45/612/1242</topic><topic>631/535/1258/1259</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Channeling</topic><topic>Cryoelectron Microscopy</topic><topic>Decoding</topic><topic>Degradation</topic><topic>DNA binding proteins</topic><topic>DNA-directed RNA polymerase</topic><topic>Electron microscopy</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Exoribonucleases - ultrastructure</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Messenger RNA</topic><topic>Microscopy</topic><topic>Nuclease</topic><topic>Nucleases</topic><topic>Nucleotides</topic><topic>Post-translation</topic><topic>Protein Structure</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Structural Biology</topic><topic>Translation</topic><topic>Translation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Heckel, Elisabeth</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Fromont-Racine, Micheline</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Beatrix, Birgitta</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Jacquier, Alain</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tesina, Petr</au><au>Heckel, Elisabeth</au><au>Cheng, Jingdong</au><au>Fromont-Racine, Micheline</au><au>Buschauer, Robert</au><au>Kater, Lukas</au><au>Beatrix, Birgitta</au><au>Berninghausen, Otto</au><au>Jacquier, Alain</au><au>Becker, Thomas</au><au>Beckmann, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the 80S ribosome–Xrn1 nuclease complex</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation.
The cryo-EM structure of the
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30911188</pmid><doi>10.1038/s41594-019-0202-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5707-9184</orcidid><orcidid>https://orcid.org/0000-0002-5227-1799</orcidid><orcidid>https://orcid.org/0000-0001-5568-8533</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0002-9255-0522</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2019-04, Vol.26 (4), p.275-280 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02174970v1 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/337/1645/2020 631/337/574/1789 631/45/612/1242 631/535/1258/1259 Biochemistry Biochemistry, Molecular Biology Biological Microscopy Biomedical and Life Sciences Channeling Cryoelectron Microscopy Decoding Degradation DNA binding proteins DNA-directed RNA polymerase Electron microscopy Exoribonucleases - genetics Exoribonucleases - metabolism Exoribonucleases - ultrastructure Gene expression Genes Genetic aspects Homeostasis Life Sciences Membrane Biology Messenger RNA Microscopy Nuclease Nucleases Nucleotides Post-translation Protein Structure Ribonucleic acid Ribosomes Ribosomes - genetics Ribosomes - metabolism Ribosomes - ultrastructure RNA RNA polymerase RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - ultrastructure Structural Biology Translation Translation (Genetics) |
title | Structure of the 80S ribosome–Xrn1 nuclease complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%2080S%20ribosome%E2%80%93Xrn1%20nuclease%20complex&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Tesina,%20Petr&rft.date=2019-04-01&rft.volume=26&rft.issue=4&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0202-5&rft_dat=%3Cgale_hal_p%3EA593382311%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202774219&rft_id=info:pmid/30911188&rft_galeid=A593382311&rfr_iscdi=true |