Structure of the 80S ribosome–Xrn1 nuclease complex

Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2019-04, Vol.26 (4), p.275-280
Hauptverfasser: Tesina, Petr, Heckel, Elisabeth, Cheng, Jingdong, Fromont-Racine, Micheline, Buschauer, Robert, Kater, Lukas, Beatrix, Birgitta, Berninghausen, Otto, Jacquier, Alain, Becker, Thomas, Beckmann, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 280
container_issue 4
container_start_page 275
container_title Nature structural & molecular biology
container_volume 26
creator Tesina, Petr
Heckel, Elisabeth
Cheng, Jingdong
Fromont-Racine, Micheline
Buschauer, Robert
Kater, Lukas
Beatrix, Birgitta
Berninghausen, Otto
Jacquier, Alain
Becker, Thomas
Beckmann, Roland
description Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation. The cryo-EM structure of the Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.
doi_str_mv 10.1038/s41594-019-0202-5
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02174970v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382311</galeid><sourcerecordid>A593382311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</originalsourceid><addsrcrecordid>eNp1ks9u1DAQxiMEoqXwAFxQJC70kOLxn9g-ripKK62ExILEzXKcyTZVEi92UpUb79A35ElwlLLVIpAPtmZ-34xm_GXZayBnQJh6HzkIzQsCuiCU0EI8yY5BcFForcTT_Vuzo-xFjDeEUCEke54dMaIBQKnjTGzGMLlxCpj7Jh-vMVdkk4e28tH3-Ovn_bcwQD5MrkMbMXe-33V49zJ71tgu4quH-yT7evHhy_llsf708ep8tS5c6jMWFSMl17pkBCpZI-VVrQSWQKhDK-pKaseUrRWvgRDdUC6Ra0c5rQQttVPsJDtd6l7bzuxC29vww3jbmsvV2swxQkFyLcktJPbdwu6C_z5hHE3fRoddZwf0UzQUtFRacVYm9O1f6I2fwpAmMTTtUUqe4Edqazs07dD4MVg3FzUroRlTlMHc9uwfVDo19q3zAzZtih8ITg8EiRnxbtzaKUZztfl8yMLCuuBjDNjslwDEzBYwiwVMsoCZLWBE0rx5GG6qeqz3ij9_ngC6ADGlhi2Gx-n_X_U3RaG2BQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202774219</pqid></control><display><type>article</type><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</creator><creatorcontrib>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</creatorcontrib><description>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation. The cryo-EM structure of the Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-019-0202-5</identifier><identifier>PMID: 30911188</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/1645/2020 ; 631/337/574/1789 ; 631/45/612/1242 ; 631/535/1258/1259 ; Biochemistry ; Biochemistry, Molecular Biology ; Biological Microscopy ; Biomedical and Life Sciences ; Channeling ; Cryoelectron Microscopy ; Decoding ; Degradation ; DNA binding proteins ; DNA-directed RNA polymerase ; Electron microscopy ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Exoribonucleases - ultrastructure ; Gene expression ; Genes ; Genetic aspects ; Homeostasis ; Life Sciences ; Membrane Biology ; Messenger RNA ; Microscopy ; Nuclease ; Nucleases ; Nucleotides ; Post-translation ; Protein Structure ; Ribonucleic acid ; Ribosomes ; Ribosomes - genetics ; Ribosomes - metabolism ; Ribosomes - ultrastructure ; RNA ; RNA polymerase ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - ultrastructure ; Structural Biology ; Translation ; Translation (Genetics)</subject><ispartof>Nature structural &amp; molecular biology, 2019-04, Vol.26 (4), p.275-280</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</citedby><cites>FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</cites><orcidid>0000-0001-5707-9184 ; 0000-0002-5227-1799 ; 0000-0001-5568-8533 ; 0000-0001-8458-2738 ; 0000-0003-4291-3898 ; 0000-0002-9255-0522 ; 0000-0003-4442-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-019-0202-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-019-0202-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30911188$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02174970$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Heckel, Elisabeth</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Fromont-Racine, Micheline</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Beatrix, Birgitta</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Jacquier, Alain</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation. The cryo-EM structure of the Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</description><subject>631/337/1645/2020</subject><subject>631/337/574/1789</subject><subject>631/45/612/1242</subject><subject>631/535/1258/1259</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>Channeling</subject><subject>Cryoelectron Microscopy</subject><subject>Decoding</subject><subject>Degradation</subject><subject>DNA binding proteins</subject><subject>DNA-directed RNA polymerase</subject><subject>Electron microscopy</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Exoribonucleases - ultrastructure</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Homeostasis</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Messenger RNA</subject><subject>Microscopy</subject><subject>Nuclease</subject><subject>Nucleases</subject><subject>Nucleotides</subject><subject>Post-translation</subject><subject>Protein Structure</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Structural Biology</subject><subject>Translation</subject><subject>Translation (Genetics)</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1ks9u1DAQxiMEoqXwAFxQJC70kOLxn9g-ripKK62ExILEzXKcyTZVEi92UpUb79A35ElwlLLVIpAPtmZ-34xm_GXZayBnQJh6HzkIzQsCuiCU0EI8yY5BcFForcTT_Vuzo-xFjDeEUCEke54dMaIBQKnjTGzGMLlxCpj7Jh-vMVdkk4e28tH3-Ovn_bcwQD5MrkMbMXe-33V49zJ71tgu4quH-yT7evHhy_llsf708ep8tS5c6jMWFSMl17pkBCpZI-VVrQSWQKhDK-pKaseUrRWvgRDdUC6Ra0c5rQQttVPsJDtd6l7bzuxC29vww3jbmsvV2swxQkFyLcktJPbdwu6C_z5hHE3fRoddZwf0UzQUtFRacVYm9O1f6I2fwpAmMTTtUUqe4Edqazs07dD4MVg3FzUroRlTlMHc9uwfVDo19q3zAzZtih8ITg8EiRnxbtzaKUZztfl8yMLCuuBjDNjslwDEzBYwiwVMsoCZLWBE0rx5GG6qeqz3ij9_ngC6ADGlhi2Gx-n_X_U3RaG2BQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Tesina, Petr</creator><creator>Heckel, Elisabeth</creator><creator>Cheng, Jingdong</creator><creator>Fromont-Racine, Micheline</creator><creator>Buschauer, Robert</creator><creator>Kater, Lukas</creator><creator>Beatrix, Birgitta</creator><creator>Berninghausen, Otto</creator><creator>Jacquier, Alain</creator><creator>Becker, Thomas</creator><creator>Beckmann, Roland</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5707-9184</orcidid><orcidid>https://orcid.org/0000-0002-5227-1799</orcidid><orcidid>https://orcid.org/0000-0001-5568-8533</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0002-9255-0522</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid></search><sort><creationdate>20190401</creationdate><title>Structure of the 80S ribosome–Xrn1 nuclease complex</title><author>Tesina, Petr ; Heckel, Elisabeth ; Cheng, Jingdong ; Fromont-Racine, Micheline ; Buschauer, Robert ; Kater, Lukas ; Beatrix, Birgitta ; Berninghausen, Otto ; Jacquier, Alain ; Becker, Thomas ; Beckmann, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-b3064996301b7de24bd85e6102cea5db79c38ad84d1009f247e49c242b5269c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/337/1645/2020</topic><topic>631/337/574/1789</topic><topic>631/45/612/1242</topic><topic>631/535/1258/1259</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>Channeling</topic><topic>Cryoelectron Microscopy</topic><topic>Decoding</topic><topic>Degradation</topic><topic>DNA binding proteins</topic><topic>DNA-directed RNA polymerase</topic><topic>Electron microscopy</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Exoribonucleases - ultrastructure</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Homeostasis</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Messenger RNA</topic><topic>Microscopy</topic><topic>Nuclease</topic><topic>Nucleases</topic><topic>Nucleotides</topic><topic>Post-translation</topic><topic>Protein Structure</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Structural Biology</topic><topic>Translation</topic><topic>Translation (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tesina, Petr</creatorcontrib><creatorcontrib>Heckel, Elisabeth</creatorcontrib><creatorcontrib>Cheng, Jingdong</creatorcontrib><creatorcontrib>Fromont-Racine, Micheline</creatorcontrib><creatorcontrib>Buschauer, Robert</creatorcontrib><creatorcontrib>Kater, Lukas</creatorcontrib><creatorcontrib>Beatrix, Birgitta</creatorcontrib><creatorcontrib>Berninghausen, Otto</creatorcontrib><creatorcontrib>Jacquier, Alain</creatorcontrib><creatorcontrib>Becker, Thomas</creatorcontrib><creatorcontrib>Beckmann, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tesina, Petr</au><au>Heckel, Elisabeth</au><au>Cheng, Jingdong</au><au>Fromont-Racine, Micheline</au><au>Buschauer, Robert</au><au>Kater, Lukas</au><au>Beatrix, Birgitta</au><au>Berninghausen, Otto</au><au>Jacquier, Alain</au><au>Becker, Thomas</au><au>Beckmann, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of the 80S ribosome–Xrn1 nuclease complex</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>26</volume><issue>4</issue><spage>275</spage><epage>280</epage><pages>275-280</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation. The cryo-EM structure of the Saccharomyces cerevisiae 80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30911188</pmid><doi>10.1038/s41594-019-0202-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5707-9184</orcidid><orcidid>https://orcid.org/0000-0002-5227-1799</orcidid><orcidid>https://orcid.org/0000-0001-5568-8533</orcidid><orcidid>https://orcid.org/0000-0001-8458-2738</orcidid><orcidid>https://orcid.org/0000-0003-4291-3898</orcidid><orcidid>https://orcid.org/0000-0002-9255-0522</orcidid><orcidid>https://orcid.org/0000-0003-4442-377X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2019-04, Vol.26 (4), p.275-280
issn 1545-9993
1545-9985
language eng
recordid cdi_hal_primary_oai_HAL_hal_02174970v1
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/337/1645/2020
631/337/574/1789
631/45/612/1242
631/535/1258/1259
Biochemistry
Biochemistry, Molecular Biology
Biological Microscopy
Biomedical and Life Sciences
Channeling
Cryoelectron Microscopy
Decoding
Degradation
DNA binding proteins
DNA-directed RNA polymerase
Electron microscopy
Exoribonucleases - genetics
Exoribonucleases - metabolism
Exoribonucleases - ultrastructure
Gene expression
Genes
Genetic aspects
Homeostasis
Life Sciences
Membrane Biology
Messenger RNA
Microscopy
Nuclease
Nucleases
Nucleotides
Post-translation
Protein Structure
Ribonucleic acid
Ribosomes
Ribosomes - genetics
Ribosomes - metabolism
Ribosomes - ultrastructure
RNA
RNA polymerase
RNA, Messenger - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Structural Biology
Translation
Translation (Genetics)
title Structure of the 80S ribosome–Xrn1 nuclease complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20the%2080S%20ribosome%E2%80%93Xrn1%20nuclease%20complex&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Tesina,%20Petr&rft.date=2019-04-01&rft.volume=26&rft.issue=4&rft.spage=275&rft.epage=280&rft.pages=275-280&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-019-0202-5&rft_dat=%3Cgale_hal_p%3EA593382311%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202774219&rft_id=info:pmid/30911188&rft_galeid=A593382311&rfr_iscdi=true