Structure of the 80S ribosome–Xrn1 nuclease complex
Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2019-04, Vol.26 (4), p.275-280 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Messenger RNA (mRNA) homeostasis represents an essential part of gene expression, in which the generation of mRNA by RNA polymerase is counter-balanced by its degradation by nucleases. The conserved 5′-to-3′ exoribonuclease Xrn1 has a crucial role in eukaryotic mRNA homeostasis by degrading decapped or cleaved mRNAs post-translationally and, more surprisingly, also co-translationally. Here we report that active Xrn1 can directly and specifically interact with the translation machinery. A cryo-electron microscopy structure of a programmed
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 enables binding at the mRNA exit site of the ribosome. This interface provides a conduit for channelling of the mRNA from the ribosomal decoding site directly into the active center of the nuclease, thus separating mRNA decoding from degradation by only 17 ± 1 nucleotides. These findings explain how rapid 5′-to-3′ mRNA degradation is coupled efficiently to its final round of mRNA translation.
The cryo-EM structure of the
Saccharomyces cerevisiae
80S ribosome–Xrn1 nuclease complex reveals how the conserved core of Xrn1 allows binding at the mRNA exit channel of the ribosome, ensuring efficient degradation of mRNA after the final round of translation. |
---|---|
ISSN: | 1545-9993 1545-9985 |
DOI: | 10.1038/s41594-019-0202-5 |