Strong renewal theorems and local large deviations for multivariate random walks and renewals

We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of probability 2019-01, Vol.24 (none)
1. Verfasser: Berger, Quentin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue none
container_start_page
container_title Electronic journal of probability
container_volume 24
creator Berger, Quentin
description We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function G(0,x) as ∥x∥→+∞, along the “favorite direction or scaling”: (i) if ∑di=1α−1i
doi_str_mv 10.1214/19-EJP308
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02171994v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02171994v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c298t-fc99960adf571b0c16fffc0c7e2c3818f5b0202f15e69f3f8e001fa6ce91622f3</originalsourceid><addsrcrecordid>eNpNkEFLAzEQhYMoWKsH_0GuHlYz2W2aHEupVikoqEcJaTrTru5uJFlX-u_d0qKe3vDx3mN4jF2CuAYJxQ2YbPbwlAt9xAYgdJ6pQpvjf_cpO0vpXQgpCqUH7O25jaFZ84gNfruKtxsMEevEXbPiVfA9qlxcI19hV7q2DE3iFCKvv6q27FzsGfLYm0PN-_zHPnhoS-fshHrBi4MO2evt7GU6zxaPd_fTySLz0ug2I2-MUcKtaDSGpfCgiMgLP0bpcw2aRsv-X0kwQmUoJ41CADnl0YCSkvIhu9r3blxlP2NZu7i1wZV2PlnYHRMSxmBM0cGf18eQUkT6DYCwuw0tGLvfMP8BFZZlAw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong renewal theorems and local large deviations for multivariate random walks and renewals</title><source>DOAJ Directory of Open Access Journals</source><source>Project Euclid Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Berger, Quentin</creator><creatorcontrib>Berger, Quentin</creatorcontrib><description>We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function G(0,x) as ∥x∥→+∞, along the “favorite direction or scaling”: (i) if ∑di=1α−1i&lt;2 (reminiscent of Garsia-Lamperti’s condition when d=1 [17]); (ii) if a certain local condition holds (reminiscent of Doney’s [13, Eq. (1.9)] when d=1). We also provide uniform bounds on the Green function G(0,x), sharpening estimates when x is away from this favorite direction or scaling. These results improve significantly the existing literature, which was mostly concerned with the case αi≡α, in the favorite scaling, and has even left aside the case α∈[1,2) with non-zero mean. Most of our estimates rely on new general (multivariate) local large deviations results, that were missing in the literature and that are of interest on their own.</description><identifier>ISSN: 1083-6489</identifier><identifier>EISSN: 1083-6489</identifier><identifier>DOI: 10.1214/19-EJP308</identifier><language>eng</language><publisher>Institute of Mathematical Statistics (IMS)</publisher><subject>Mathematics ; Probability</subject><ispartof>Electronic journal of probability, 2019-01, Vol.24 (none)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c298t-fc99960adf571b0c16fffc0c7e2c3818f5b0202f15e69f3f8e001fa6ce91622f3</citedby><cites>FETCH-LOGICAL-c298t-fc99960adf571b0c16fffc0c7e2c3818f5b0202f15e69f3f8e001fa6ce91622f3</cites><orcidid>0000-0003-1100-9142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02171994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berger, Quentin</creatorcontrib><title>Strong renewal theorems and local large deviations for multivariate random walks and renewals</title><title>Electronic journal of probability</title><description>We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function G(0,x) as ∥x∥→+∞, along the “favorite direction or scaling”: (i) if ∑di=1α−1i&lt;2 (reminiscent of Garsia-Lamperti’s condition when d=1 [17]); (ii) if a certain local condition holds (reminiscent of Doney’s [13, Eq. (1.9)] when d=1). We also provide uniform bounds on the Green function G(0,x), sharpening estimates when x is away from this favorite direction or scaling. These results improve significantly the existing literature, which was mostly concerned with the case αi≡α, in the favorite scaling, and has even left aside the case α∈[1,2) with non-zero mean. Most of our estimates rely on new general (multivariate) local large deviations results, that were missing in the literature and that are of interest on their own.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1083-6489</issn><issn>1083-6489</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLAzEQhYMoWKsH_0GuHlYz2W2aHEupVikoqEcJaTrTru5uJFlX-u_d0qKe3vDx3mN4jF2CuAYJxQ2YbPbwlAt9xAYgdJ6pQpvjf_cpO0vpXQgpCqUH7O25jaFZ84gNfruKtxsMEevEXbPiVfA9qlxcI19hV7q2DE3iFCKvv6q27FzsGfLYm0PN-_zHPnhoS-fshHrBi4MO2evt7GU6zxaPd_fTySLz0ug2I2-MUcKtaDSGpfCgiMgLP0bpcw2aRsv-X0kwQmUoJ41CADnl0YCSkvIhu9r3blxlP2NZu7i1wZV2PlnYHRMSxmBM0cGf18eQUkT6DYCwuw0tGLvfMP8BFZZlAw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Berger, Quentin</creator><general>Institute of Mathematical Statistics (IMS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1100-9142</orcidid></search><sort><creationdate>20190101</creationdate><title>Strong renewal theorems and local large deviations for multivariate random walks and renewals</title><author>Berger, Quentin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c298t-fc99960adf571b0c16fffc0c7e2c3818f5b0202f15e69f3f8e001fa6ce91622f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Quentin</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic journal of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berger, Quentin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong renewal theorems and local large deviations for multivariate random walks and renewals</atitle><jtitle>Electronic journal of probability</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>24</volume><issue>none</issue><issn>1083-6489</issn><eissn>1083-6489</eissn><abstract>We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function G(0,x) as ∥x∥→+∞, along the “favorite direction or scaling”: (i) if ∑di=1α−1i&lt;2 (reminiscent of Garsia-Lamperti’s condition when d=1 [17]); (ii) if a certain local condition holds (reminiscent of Doney’s [13, Eq. (1.9)] when d=1). We also provide uniform bounds on the Green function G(0,x), sharpening estimates when x is away from this favorite direction or scaling. These results improve significantly the existing literature, which was mostly concerned with the case αi≡α, in the favorite scaling, and has even left aside the case α∈[1,2) with non-zero mean. Most of our estimates rely on new general (multivariate) local large deviations results, that were missing in the literature and that are of interest on their own.</abstract><pub>Institute of Mathematical Statistics (IMS)</pub><doi>10.1214/19-EJP308</doi><orcidid>https://orcid.org/0000-0003-1100-9142</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1083-6489
ispartof Electronic journal of probability, 2019-01, Vol.24 (none)
issn 1083-6489
1083-6489
language eng
recordid cdi_hal_primary_oai_HAL_hal_02171994v1
source DOAJ Directory of Open Access Journals; Project Euclid Open Access Journals; Free E-Journal (出版社公開部分のみ)
subjects Mathematics
Probability
title Strong renewal theorems and local large deviations for multivariate random walks and renewals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A15%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20renewal%20theorems%20and%20local%20large%20deviations%20for%20multivariate%20random%20walks%20and%20renewals&rft.jtitle=Electronic%20journal%20of%20probability&rft.au=Berger,%20Quentin&rft.date=2019-01-01&rft.volume=24&rft.issue=none&rft.issn=1083-6489&rft.eissn=1083-6489&rft_id=info:doi/10.1214/19-EJP308&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02171994v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true