Strong renewal theorems and local large deviations for multivariate random walks and renewals
We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function...
Gespeichert in:
Veröffentlicht in: | Electronic journal of probability 2019-01, Vol.24 (none) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a random walk Sn on Zd (d≥1), in the domain of attraction of an operator-stable distribution with index α=(α1,…,αd)∈(0,2]d: in particular, we allow the scalings to be different along the different coordinates. We prove a strong renewal theorem, i.e. a sharp asymptotic of the Green function G(0,x) as ∥x∥→+∞, along the “favorite direction or scaling”: (i) if ∑di=1α−1i |
---|---|
ISSN: | 1083-6489 1083-6489 |
DOI: | 10.1214/19-EJP308 |