Distribution of Chern–Simons invariants
Let M be a 3-manifold with a finite set X(M) of conjugacy classes of representations ρ : π1(M) → SU2. We study here the distribution of the values of the Chern-Simons function CS : X(M) → R/2πZ. We observe in some examples that it resembles the distribution of qua-dratic residues. In particular for...
Gespeichert in:
Veröffentlicht in: | Annales de l'Institut Fourier 2019-01, Vol.69 (2), p.753-762 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a 3-manifold with a finite set X(M) of conjugacy classes of representations ρ : π1(M) → SU2. We study here the distribution of the values of the Chern-Simons function CS : X(M) → R/2πZ. We observe in some examples that it resembles the distribution of qua-dratic residues. In particular for specific sequences of 3-manifolds, the invariants tends to become equidistributed on the circle with white noise fluctuations of order |X(M)| −1/2. We prove that for a manifold with toric boundary the Chern-Simons invariants of the Dehn fillings M p/q have the same behaviour when p and q go to infinity and compute fluctuations at first order. |
---|---|
ISSN: | 1777-5310 0373-0956 1777-5310 |
DOI: | 10.5802/aif.3256 |