The spectrum of a weighted Laplacian in the half-space
J. Banasiak In this paper, we deal with spectral properties of a weighted Laplacian in the half‐space when a Dirichlet or a Neumann boundary condition is imposed. After proving that the spectrum is discrete under suitable assumptions, we give explicit formulae of eigenvalues and eigenfunctions in a...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2016-01, Vol.39 (2), p.280-288 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | J. Banasiak In this paper, we deal with spectral properties of a weighted Laplacian in the half‐space when a Dirichlet or a Neumann boundary condition is imposed. After proving that the spectrum is discrete under suitable assumptions, we give explicit formulae of eigenvalues and eigenfunctions in a specific case. In particular, the obtained eigenfunctions are rational or pseudo‐rational and have remarkable orthogonality properties. These results suggest the use of the discovered functions for approximating solutions of elliptic problems in the half‐space. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.3476 |