Orbifold Products for Higher $K$-Theory and Motivic Cohomology
Due to the work of many authors in the last decades, given an algebraic orbifold (smooth proper Deligne-Mumford stack with trivial generic stabilizer), one can construct its orbifold Chow ring and orbifold Grothendieck ring, and relate them by the orbifold Chern character map, generalizing the funda...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2019, Vol.24, p.1769-1810 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the work of many authors in the last decades, given an algebraic orbifold (smooth proper Deligne-Mumford stack with trivial generic stabilizer), one can construct its orbifold Chow ring and orbifold Grothendieck ring, and relate them by the orbifold Chern character map, generalizing the fundamental work of Chen-Ruan on orbifold cohomology. In this paper, we extend this theory naturally to higher Chow groups and higher algebraic
K
-theory, mainly following the work of Jarvis-Kaufmann-Kimura and Edidin-Jarvis-Kimura. |
---|---|
ISSN: | 1431-0635 1431-0643 1431-0643 1431-0635 |
DOI: | 10.4171/dm/715 |