Spectral Gap Critical Exponent for Glauber Dynamics of Hierarchical Spin Models

We develop a renormalisation group approach to deriving the asymptotics of the spectral gap of the generator of Glauber type dynamics of spin systems with strong correlations (at and near a critical point). In our approach, we derive a spectral gap inequality for the measure recursively in terms of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2020-02, Vol.373 (3), p.1167-1206
Hauptverfasser: Bauerschmidt, Roland, Bodineau, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a renormalisation group approach to deriving the asymptotics of the spectral gap of the generator of Glauber type dynamics of spin systems with strong correlations (at and near a critical point). In our approach, we derive a spectral gap inequality for the measure recursively in terms of spectral gap inequalities for a sequence of renormalised measures. We apply our method to hierarchical versions of the 4-dimensional n -component | φ | 4 model at the critical point and its approach from the high temperature side, and of the 2-dimensional Sine-Gordon and the Discrete Gaussian models in the rough phase (Kosterlitz–Thouless phase). For these models, we show that the spectral gap decays polynomially like the spectral gap of the dynamics of a free field (with a logarithmic correction for the | φ | 4 model), the scaling limit of these models in equilibrium.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-019-03553-x