Optical Transmission of an Atomic Vapor in the Mesoscopic Regime
By measuring the transmission of near-resonant light through an atomic vapor confined in a nanocell we demonstrate a mesoscopic optical response arising from the nonlocality induced by the motion of atoms with a phase coherence length larger than the cell thickness. Whereas conventional dispersion t...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-03, Vol.122 (11), p.113401-113401, Article 113401 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By measuring the transmission of near-resonant light through an atomic vapor confined in a nanocell we demonstrate a mesoscopic optical response arising from the nonlocality induced by the motion of atoms with a phase coherence length larger than the cell thickness. Whereas conventional dispersion theory-where the local atomic response is simply convolved by the Maxwell-Boltzmann velocity distribution-is unable to reproduce the measured spectra, a model including a nonlocal, size-dependent susceptibility is found to be in excellent agreement with the measurements. This result improves our understanding of light-matter interaction in the mesoscopic regime and has implications for applications where mesoscopic effects may degrade or enhance the performance of miniaturized atomic sensors. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.122.113401 |