Kazhdan constants, continuous probability measures with large Fourier coefficients and rigidity sequences
Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers $p_{1},\dots,p_{r}$ there exists a continuous probability measure $\mu $ on the unit circle $\T$ such that $$\inf_{k_{1}\ge 0,\dots,k_{r}\ge 0}|\wh{\mu }(p_{1}^...
Gespeichert in:
Veröffentlicht in: | Commentarii mathematici Helvetici 2020-01, Vol.95 (1), p.99-127 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exploiting a construction of rigidity sequences for weakly mixing dynamical systems by Fayad and Thouvenot, we show that for every integers $p_{1},\dots,p_{r}$ there exists a continuous probability measure $\mu $ on the unit circle $\T$ such that $$\inf_{k_{1}\ge 0,\dots,k_{r}\ge 0}|\wh{\mu }(p_{1}^{k_{1}}\dots p_{r}^{k_{r}})| > 0.$$ This results applies in particular to the Furstenberg set $F=\{2^{k}3^{k'}\,;\,k\ge 0,\ k'\ge 0\}$, and disproves a 1988 conjecture of Lyons inspired by Furstenberg's famous \times 2 \,\text{-} \!{}\times 3$ conjecture. We also estimate the modified Kazhdan constant of $F$ and obtain general results on rigidity sequences which allow us to retrieve essentially all known examples of such sequences. |
---|---|
ISSN: | 0010-2571 1420-8946 |
DOI: | 10.4171/CMH/482 |