Thermal and Microstructure Study of the Chip Formation During Turning of Ti64 β Lamellar Titanium Structure
In recent years, many titanium alloys have emerged, each of them associated with a range of different heat treatments. Thus, several microstructures have been studied to varying degrees. For example, the Ti64 titanium alloy, mostly known for its α + β structure, can display a different state: the st...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing science and engineering 2018-03, Vol.140 (3) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, many titanium alloys have emerged, each of them associated with a range of different heat treatments. Thus, several microstructures have been studied to varying degrees. For example, the Ti64 titanium alloy, mostly known for its α + β structure, can display a different state: the structure, inducing nonstandard mechanical behavior. This work presents chip formation in this specific microstructure where a strong heterogeneity is observed and where the shear band formation is a function of the relationship between the shear direction and the microstructure orientation. From these reasons, major differences are found in the chip morphology, within the same cutting condition, in comparison to the bimodal structure where a single chip morphology is obtained for each cutting condition. A section of this paper is devoted to the presentation of the β microstructure where different configurations can be seen within the same chip. Next, the influence of cutting conditions on the chip formation is studied. To highlight the specific chip formation process, a temperature model has been developed and combined with cutting force analysis to understand clearly the specificity of the chip formation for this structure. Finally, the discussion explains the different chip formation scenarios according to the workpiece microstructure to be cut. |
---|---|
ISSN: | 1087-1357 1528-8935 |
DOI: | 10.1115/1.4038597 |