A survey on driving prediction techniques for predictive energy management of plug-in hybrid electric vehicles
Driving prediction techniques (DPTs) are used to forecast the distributions of various future driving conditions (FDC), like velocity, acceleration, driver behaviors etc. and the quality of prediction results has great impacts on the performance of corresponding predictive energy management strategi...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2019-02, Vol.412, p.480-495 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Driving prediction techniques (DPTs) are used to forecast the distributions of various future driving conditions (FDC), like velocity, acceleration, driver behaviors etc. and the quality of prediction results has great impacts on the performance of corresponding predictive energy management strategies (PEMSs), e.g., fuel economy (FE), lifetime of battery etc. This survey presents a comprehensive study on existing DPTs. Firstly, a review on prediction objectives and major types of prediction algorithms are presented. Then a comparative study on various prediction approaches is carried out and suitable application scenarios for each approach are provided according to their characteristics. Moreover, prediction accuracy-affecting factors are analyzed and corresponding approaches for dealing with mis-predictions are discussed in detail. Finally, the bottlenecks of current researches and future developing trends of DPTs are given. In general, this paper not only gives a comprehensive analysis and review of existing DPTs but also indicates suitable application scenarios for each prediction algorithm and summarizes potential approaches for handling the prediction inaccuracies, which will help prospective designers to select proper DPTs according to different applications and contribute to the further performance enhancements of PEMSs for hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs).
•A comprehensive review on existing driving prediction techniques is conducted.•A driving-scenario-based comparative study on prediction approaches is presented.•Several prediction accuracy and robustness improving strategies are discussed.•Bottlenecks and future developing trends of prediction techniques are proposed. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2018.11.085 |