Geometrical characterization of urban fill by integrating the multi‐receiver electromagnetic induction method and electrical resistivity tomography: A case study in Poitiers, France

A geophysical survey including electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods was applied and assessed with a 40‐trench sampling grid to delineate the geometry of an urban fill layer. Classical investigation techniques, such as excavation, offer localized informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of soil science 2019-09, Vol.70 (5), p.1012-1024
Hauptverfasser: Cavalcante Fraga, Luis H., Schamper, Cyril, Noël, Cécile, Guérin, Roger, Rejiba, Fayçal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A geophysical survey including electromagnetic induction (EMI) and electrical resistivity tomography (ERT) methods was applied and assessed with a 40‐trench sampling grid to delineate the geometry of an urban fill layer. Classical investigation techniques, such as excavation, offer localized information and suffer from time and budget constraints for environmental assessments. Near‐surface geophysics can provide the required spatial sampling to evaluate the coverage of anthropogenic soils in a time‐effective and quasi‐continuous manner. Fast‐acquisition and high‐spatial‐coverage EMI mapping and high‐vertical‐resolution ERT were implemented to delineate a suspicious urban fill on a 5‐ha site in a suburban region, which will host the buildings of a commercial complex. The ERT data and 40 trench excavations revealed an urban fill thickness ranging from 0.4 to 3.6 m overlying a calcareous substratum. After ERT–EMI calibration, a two‐layer model was introduced into the one‐dimensional (1‐D) inversion of the EMI data for estimating the geometry of the urban fill layer across the study site. The EMI 1‐D inversion results indicated that the predicted urban fill thicknesses were consistent with 70% of the measured values (27 out of 40 excavation sites). Resistive ground, large 3‐D structures and the heterogeneity of urban fill affected the EMI and ERT measurements and increased the difficulty of estimating its spatial distribution. In this paper, we present a measurement protocol that can guide land‐use development and be reproduced to investigate brownfield sites. Highlights Urban soils are poorly characterized by localized investigations for environmental assessments. Spatial EMI data from an urban fill context were calibrated by ERT for thickness inversion. The ERT–EMI inversion reconstructed the urban fill thickness for 70% of the excavation points. Geophysical techniques can reduce uncertainties for site rehabilitation and land‐use development.
ISSN:1351-0754
1365-2389
DOI:10.1111/ejss.12806