The Pressure Gap for Thiols: Methanethiol Self-Assembly on Au(111) from Vacuum to 1 bar

Functionalizing noble metal surfaces with (bio)­organic molecules is a vibrant field of research, with key applications in medicine, catalysis, and molecular electronics. Control over the molecular self-assembly is essential to creating functional devices. Here, we exploit our high-pressure, high-te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2019-05, Vol.123 (19), p.12382-12389
Hauptverfasser: Mom, Rik V, Melissen, Sigismund T. A. G, Sautet, Philippe, Frenken, Joost W. M, Steinmann, Stephan N, Groot, Irene M. N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functionalizing noble metal surfaces with (bio)­organic molecules is a vibrant field of research, with key applications in medicine, catalysis, and molecular electronics. Control over the molecular self-assembly is essential to creating functional devices. Here, we exploit our high-pressure, high-temperature scanning tunneling microscope (STM) to relate the effects of controllable parameters (temperature and pressure) to atomic-scale assembly mechanisms. Using methanethiol self-assembly on Au(111) as a model system, we monitor the formation and assembly of the ubiquitous (CH3S)2Au “staple” motif into row structures at pressures of up to 1 bar. We observe a pressure-induced transition from the usual 1/3 monolayer (ML) saturation coverage in vacuum to 3/8 ML at 1 bar, thus providing the first evidence for a pressure gap effect for thiol adsorption. Complementing our experiments, we employed dispersion-corrected density functional theory computations to model the formed surface adlayers, corresponding STM images, and underlying equilibrium thermodynamics.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.9b03045