Sorption and transport of aqueous FeII in a goethite-coated sand column under anoxic conditions
•FeII sorption extent and rate depended on the kind of the underlying goethite.•Agreement between batch and column data exists, except for G1.•Kinetic sorption affects the transport behavior only in the G1 column.•Surface complexation parameters accurately predicted FeII mobility in columns.•The mob...
Gespeichert in:
Veröffentlicht in: | Applied geochemistry 2013-08, Vol.35, p.255-263 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •FeII sorption extent and rate depended on the kind of the underlying goethite.•Agreement between batch and column data exists, except for G1.•Kinetic sorption affects the transport behavior only in the G1 column.•Surface complexation parameters accurately predicted FeII mobility in columns.•The mobility of FeII under anoxic flow conditions was dependent on water velocity.
Experiments were conducted under static batch and dynamic flow conditions to evaluate the sorption of FeII onto three goethites (G1, G2 and G3) having different crystal habits, morphologies and surface properties. Results reveal that G1 exhibited the highest FeII sorption extent and lowest kinetic rate constant, which may result from higher surface site density, surface roughness and edge surface faces. Surface complexation modeling parameters derived from batch experiments were combined with hydrodynamic parameters to simulate breakthrough curves in goethite-coated sand packed columns. The total sorbed amount of FeII at complete breakthrough was in agreement with that expected from the batch experiments, except for G1. Sorption breakthrough predictions that make use of surface complexation parameters accurately predicted FeII mobility in G2 and G3 columns, but poorly in G1 column. Experiments at various flow rates in G1 columns represented different amounts of FeII sorbed at complete breakthrough, thereby underscoring the impact of kinetic sorption. Moreover, Fe dissolution/re-precipitation or FeII-induced transformation of goethite was suspected at the lowest flow rate in the G1 column. The influence of goethite phase specific reactivity on FeII sorption under batch versus advective–dispersive flow is herein demonstrated. These findings have strong implications to assess transport of FeII and environmental contaminants both in natural and engineered systems. |
---|---|
ISSN: | 0883-2927 1872-9134 |
DOI: | 10.1016/j.apgeochem.2013.04.017 |