Strain-induced resistance change in V 2 O 3 films on piezoelectric ceramic disks
We prepared a stacked structure consisting of a quasi-free-standing functional oxide thin film and a ceramic piezoelectric disk and observed the effect of the piezoelectric disk deformation on the resistance of the thin film. Epitaxial V2O3 films were grown by a pulsed laser deposition method on mus...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2019, Vol.125 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prepared a stacked structure consisting of a quasi-free-standing functional oxide thin film and a ceramic piezoelectric disk and observed the effect of the piezoelectric disk deformation on the resistance of the thin film. Epitaxial V2O3 films were grown by a pulsed laser deposition method on muscovite mica substrates, peeled off using Scotch tapes, and transferred onto piezoelectric elements. In this V2O3/insulator/top electrode/piezoelectronic disk/bottom electrode structure, the resistance of the V2O3 film displayed a variation of 60% by sweeping the piezoelectronic disk bias. With support from x-ray diffraction measurements under an electric field, a huge gauge factor of 3 × 103 in the V2O3 film was inferred. The sizeable resistance change in the V2O3 layer is ascribed to the piezo-actuated evolution of c/a ratios, which drives the material towards an insulating phase. A memory effect on the resistance, related to the hysteretic displacement of the piezoelectric material, is also presented. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.5083941 |