Revisited phytoplanktonic carbon dependency of heterotrophic bacteria in freshwaters, transitional, coastal and oceanic waters
Positive relationships between heterotrophic bacteria and particulate phytoplankton production (respectively, BP and PPP) have been reported for several areas, suggesting that material produced by phytoplankton was a major substrate for bacterial growth. Since then, thousands of simultaneous measure...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2010-09, Vol.73 (3), p.419-429 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Positive relationships between heterotrophic bacteria and particulate phytoplankton production (respectively, BP and PPP) have been reported for several areas, suggesting that material produced by phytoplankton was a major substrate for bacterial growth. Since then, thousands of simultaneous measurements of both PPP and BP have been performed. A review of these data showed that BP may exceed PPP considerably (median ranged between 132% and 484%) in all aquatic systems with the lowest PPP. In oceanic waters, BP did not seem to be temporally synchronized with PPP and the median BP : PPP ratio is 15% with moderate PPP, but the immediate bacterial carbon (C) demand (including bacterial respiration) was greater than the corresponding total primary production (i.e. dissolved and particulate primary production) for >80% of both volumetric and areal datasets. In freshwaters, the strong covariation observed between BP and PPP seemed mainly due to a common response to sudden nutrient inputs into enclosed systems, leading to a similar range of production rates and temporal synchronicities. Indeed, phytoplankton exudates contributed directly to only 32% (median) of BP when C-tracking experiments were performed in freshwaters. Therefore, because direct C dependency of bacteria on phytoplankton is questionable, other C sources might be more significant for bacterial growth. |
---|---|
ISSN: | 0168-6496 1574-6941 |
DOI: | 10.1111/j.1574-6941.2010.00896.x |