Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2017-09, Vol.12 (9), p.914-919
Hauptverfasser: Kim, Jongwook, Michelin, Sébastien, Hilbers, Michiel, Martinelli, Lucio, Chaudan, Elodie, Amselem, Gabriel, Fradet, Etienne, Boilot, Jean-Pierre, Brouwer, Albert M., Baroud, Charles N., Peretti, Jacques, Gacoin, Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO 4 nanorods assembled in an electrically modulated liquid-crystalline phase. We measure Eu 3+ emission spectra for the three main optical configurations ( σ , π and α , depending on the direction of observation and the polarization axes) and use them as a reference for the nanorod orientation analysis. Based on the fact that flowing nanorods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system. Polarized photoluminescence spectra of europium-doped nanorods can be used to measure the local shear rate profile of a liquid in microfluidic channels.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2017.111