Iterative learning radial basis function neural networks control for unknown multi input multi output nonlinear systems with unknown control direction

In this paper, an iterative learning radial basis function neural-networks (RBF NN) control algorithm is developed for a class of unknown multi input multi output (MIMO) nonlinear systems with unknown control directions. The proposed control scheme is very simple in the sense that we use just a P-ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2019-08, Vol.41 (12), p.3452-3467
Hauptverfasser: Bensidhoum, Tarek, Bouakrif, Farah, Zasadzinski, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an iterative learning radial basis function neural-networks (RBF NN) control algorithm is developed for a class of unknown multi input multi output (MIMO) nonlinear systems with unknown control directions. The proposed control scheme is very simple in the sense that we use just a P-type iterative learning control (ILC) updating law in which an RBF neural network term is added to approximate the unknown nonlinear function, and an adaptive law for the weights of RBF neural network is proposed. We chose the RBF NN because it has universal approximation capabilities and can approximate any continuous function. In addition, among the advantages of our controller scheme is the fact that it is applicable to deal with a class of nonlinear systems without the need to satisfy the global Lipschitz continuity condition and we assume, only, that the unstructured uncertainty is norm-bounded by an unknown function. Another advantage of the proposed controller and unlike other works on ILC, we do not need any prior knowledge of the control directions for MIMO nonlinear system. Thus, the Nussbaum-type function is used to solve the problem of unknown control directions. In order to prove the asymptotic stability of the closed-loop system, a Lyapunov-like positive definite sequence is used, which is shown to be monotonically decreasing under the control design scheme. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed control scheme.
ISSN:0142-3312
1477-0369
DOI:10.1177/0142331219826659