Interdiffusion between silica thin films and soda‐lime glass substrate during annealing at high temperature

We study the diffusive interaction between soda‐lime glass substrates and sputtered aluminum‐doped silica thin films at 650°C, the temperature of commercial soda‐lime glass shaping or tempering. A first rapid migration of alkali ions from substrate to thin film has been described in a companion pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2019-06, Vol.102 (6), p.3341-3353
Hauptverfasser: Fonné, Jean‐Thomas, Burov, Ekaterina, Gouillart, Emmanuelle, Grachev, Sergey, Montigaud, Hervé, Vandembroucq, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the diffusive interaction between soda‐lime glass substrates and sputtered aluminum‐doped silica thin films at 650°C, the temperature of commercial soda‐lime glass shaping or tempering. A first rapid migration of alkali ions from substrate to thin film has been described in a companion paper (J Am Ceram Soc. 2018;101:1516). Using the same samples as (J Am Ceram Soc. 2018;101:1516), we focus here on later interactions, when the layer is consumed by the substrate resulting from diffusive interactions. Using Secondary Ion Mass Spectroscopy profilometry, we show that the interdiffusion rate increases with the aluminum doping content of the layer. We show that the alkali uptake of silica layers accelerates diffusive exchanges with the substrate, consistently with a decrease of viscosity of the layer. Diffusion profiles of silicon are well reproduced when solving the diffusion equation for a diffusivity having an exponential dependence with silicon concentration. The diffusivity of aluminum is shown to be 10 times slower than the diffusion of silicon. Specific exchanges of the two network formers with network modifiers are deduced from the composition‐space trajectories, providing evidence for multicomponent diffusive couplings between species.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.16154