Limitation of XPS for analysis of wood species containing high amounts of lipophilic extractives
Chemical composition of Norway spruce and pine, two softwood species, has been investigated by X-ray Photoelectron Spectroscopy (XPS). Contrary to results previously obtained with beech wood, which allow to obtain information on bulk chemical composition from surface composition analysis, XPS analys...
Gespeichert in:
Veröffentlicht in: | Wood science and technology 2011-05, Vol.45 (2), p.369-382 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chemical composition of Norway spruce and pine, two softwood species, has been investigated by X-ray Photoelectron Spectroscopy (XPS). Contrary to results previously obtained with beech wood, which allow to obtain information on bulk chemical composition from surface composition analysis, XPS analysis appears to be unsuitable for the characterisation of Norway spruce and pine wood chemical composition. Indeed, chemical compositions calculated from XPS data differ strongly from those obtained from microanalyses which are in good agreement with theoretical composition described in the literature. XPS analysis of both the softwood surfaces indicated high carbon contents explained by migration of lipophilic extractives to the surface under the influence of the vacuum necessary for XPS analysis. Nonvolatile extractives contained in wood were extracted and deposited on glass plates and analysed. Survey and detailed C1s spectra indicated similar signals to those recorded on wood surfaces. This phenomenon was not observed when samples had been previously extracted before analysis. These results strongly evidenced that extractives present in both species are able to migrate through resin canals from the bulk of the sample to the surface when put into ultra high vacuum. XPS presents, therefore, some limits in the case of the analysis of softwood species containing extractives able to migrate to the surface during analysis. This behaviour, difficult to control, could lead to erroneous interpretations due to extractives enrichment of the surface under the effect of vacuum. |
---|---|
ISSN: | 0043-7719 1432-5225 |
DOI: | 10.1007/s00226-010-0324-8 |